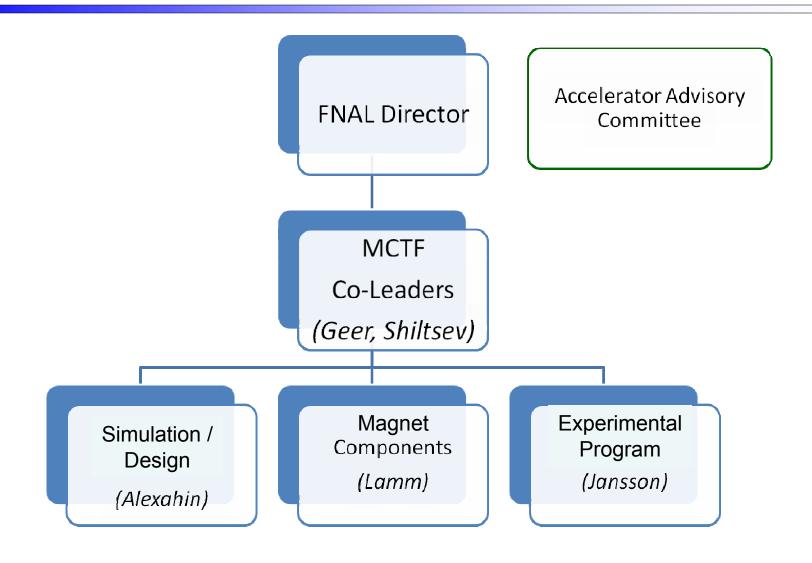


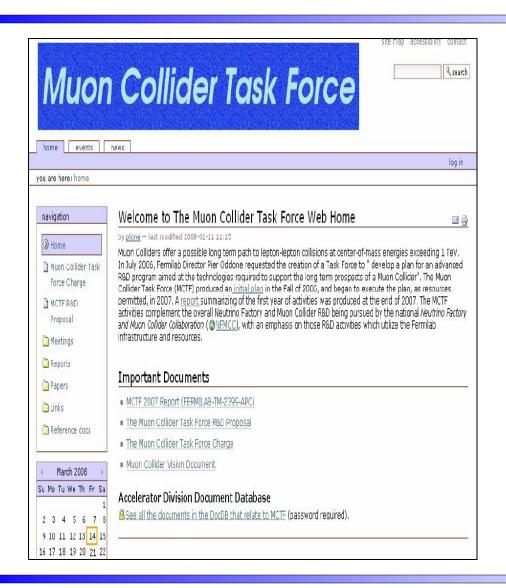
MUON COLLIDER TASK FORCE

Overview of organization, activities, and plans



CHARGE

- Charge from the Fermilab Director (July 2006)
 - "...the Muon Collider represents a possible long term path for extending the energy frontier in lepton collisions beyond 1 TeV."
 - "...Task Force to <u>develop a plan for an advanced R&D program</u> <u>aimed at the technologies required to support the long term</u> <u>prospects of a Muon Collider</u>. "
 - requested for September 2006: A report outlining a plan for developing the Muon Collider concept based on recent ideas in the realm of ionization cooling.
- Initial proposal delivered Sept. 2006
 - → https://mctf.fnal.gov/muoncollider_aard_proposal_v3.doc
- Report on first years activities delivered in Dec. 2007
 - → FNAL-TM-2399



ORGANIZATION

MCTF WEBSITE

- MCTF website: http://mctf.fnal.gov
- APC Muon Dept. website:

http://apc.fnal.gov/ groups2/muon.shtml

MCTF REPORT

FERMILAB-TM-2399-APC

10-Jan-08

MUON COLLIDER TASK FORCE REPORT

C.Ankenbrandt, Y.Alexahin, V.Balbekov, E.Barzi, C.Bhat, D.Brommelsiek, A.Bross, A.Burov, A.Drozhdin, D.Finley, S.Geer, N.Gelfand, E.Gianfelice-Wendt, M.Hu, A.Jansson, C.Johnstone, J.Johnstone, Vl.Kashikhin, V.Kashikhin, M.Lamm, V.Lebedev, N.Mokhov, C.Moore, A.Moretti, D.Neuffer, K.-Y.Ng, M.Popovic, I.Rakhno, V.Shiltsev, P.Spentsouris, A.Striganov, A.Tollestrup, A.Valishev, A.Van Ginneken, K.Yonehara, C.Yoshikawa, A. Zlobin
FNAL

J.Norem ANL

J.S.Berg, J.C.Gallardo, R.Gupta, H.Kirk, R.Palmer, R.Fernow, P.Wanderer BNL

> A.Bogacz, Y.-C.Chao, Y.Derbenev, R.A.Rimmer JLAB

G.Sabbi, P.Ferracin, S.Caspi, M.Zisman *LBNL*

R.Abrams, K.Beard, R.P.Johnson, M.A.Cummings, S.A.Kahn, S.Korenev, D.Newsham, T.J.Roberts

Muons Inc.

D.B.Cline, Y.Fukui , A.Garren UCLA

> G.Hanson, A.Klier UC Riverside

L.M.Cremaldi, D.J.Summers University of Mississippi Report on first year of MCTF activities:

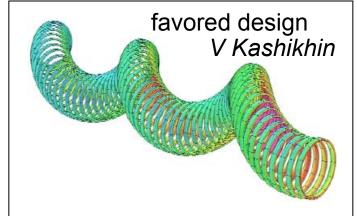
https://mctf.fnal.gov/ annual-reports/ mctf-report-2007_v9.doc

- Delivered Dec. 2007 (final version Jan 2008)
- Participation from:
 - 9 Institutions
 - 64 People

MCTF ACTIVITIES

 With the NFMCC, prepare the way for a "Muon Collider Feasibility Study" in ~FY011-FY012 with main MCTF focus on 6D Cooling R&D and Collider Ring Design

Present MCTF Activities

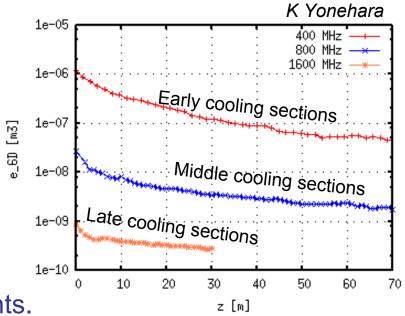

- Helical Cooling Channel design, simulation & component tests
- Additional cooling channel simulation studies for last cooling channel stages ("FOFO Snake")
- HTS conductor & magnet studies (for end of cooling channel)
- Collider Ring Lattice Studies
- Parameter Studies (MC parameter list, wall plug power)
- Physics, Detector & Background Studies
- First look at using ILC cavities (beam loading issues)

HCC ACTIVITIES

A Helical Cooling Channel filled with high pressure H₂ gas has been proposed by Derbenev & Johnson (Muons Inc). MCTF goal: do what is necessary to find out whether this idea is a viable & attractive option.

- Develop & simulate HCC design, including RF cavities, with realistic engineering constraints.
- Build & test a 4-coil HCC model magnet.
- Test in a beam an RF cavity filled with high hydrogen gas at high pressure.
- Near-Term Goals
 - Establish whether an HCC is viable and define a prototype HCC section to build and test in the next few years.

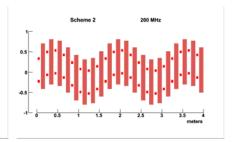
- Beam follows helical trajectory
- Longitudinal & transverse degrees of freedom mix
- ullet Transverse ightarrow 6D cooling


HCC SIMULATIONS

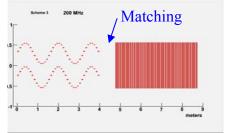
Motivation

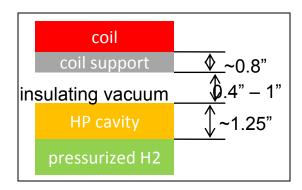
- Early simulations ignored engineering constraints, for example it was assumed $R_{cavity} > R_{coil}$.
- A more realistic simulation is needed before we can conclude that an HCC is viable & attractive.

MCTF Progress & Plans


- Independent simulation
 (V. Balbekov) confirmed
 main results (K. Yonehara).
- Studies show when R_{cavity} reduced there is a loss in performance.
- Coming year: Continue simulation studies with more realistic engineering constraints.

RF INTEGRATION IN HCC


- 3 options identified for _
 RF integration in HCC.


- Which options are practical?
- RF inside coils

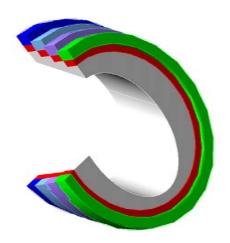
coils inside RF

- What impact do their details have on HCC performance?
- Want an answer before we decide what to prototype & test
- MCTF Progress & Plans
 - Assembled teamto get someengineering input
- A Jansson, K Yonehara, V Kashikin, M Lamm, J Theilacker, A Klebaner, D Sun, A Lee, G Romanov, D Broemmelsiek, G Kutznetsov, A Shemyakin
- first understanding of coil-rf separation.
- In coming year, define prototype & begin the design.
- More details
 - See A. Jansson's talk

separated RF sections

HCC RF 4 COIL TEST

Motivation

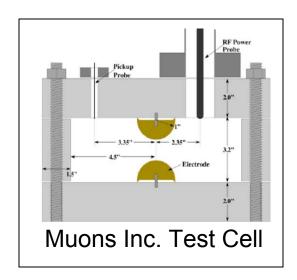

- Validate mechanical structure & winding technology
- Develop field quality measurement
- Study quench protection issues

Progress

- Muons Inc. STTR phase 2 funds obtained to support labor for design, fabrication & test (materials + contract labor from MCTF funds).
- Mechanical & magnetic design completed, and conductor obtained & tested
- Procurement in progress
- Plan pre-fabrication review in May & test at end of FY08

More details

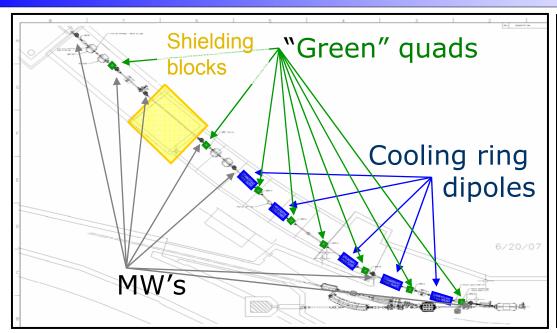
See S. Zlobin's talk



HIGH PRESSURE RF FOR HCC

Motivation

- Within the HCC, hydrogen gas at high pressure is used to both suppress RF breakdown in a magnetic field (already demonstrated without beam) & provide the energy loss media for the cooling channel.
- Not clear that HPRF cavities will work in an ionizing beam ... for the HCC concept its crucial that we find out.



MCTF Progress & Plans

- Plan to test Muons Inc. HPRF cell in a beam at the MUCOOL Test Facility.
- In 2007 most of the beamline was built (major activity)
- Plan to complete beamline this calendar year.
- If results are encouraging, next step would be to build and test a real HPRF cavity in an appropriate magnetic field.

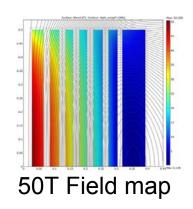
BEAMLINE FOR HPRF TEST

BEAMLINE AS INSTALLED

- Beamline installation nearing completion
 - Significant accomplishment in last year
 - Need linac access to complete
- •More details:
 - See C. Johnstone's talk on beamline (& A. Bross talk)
 - See A. Jansson's talk on experimental program

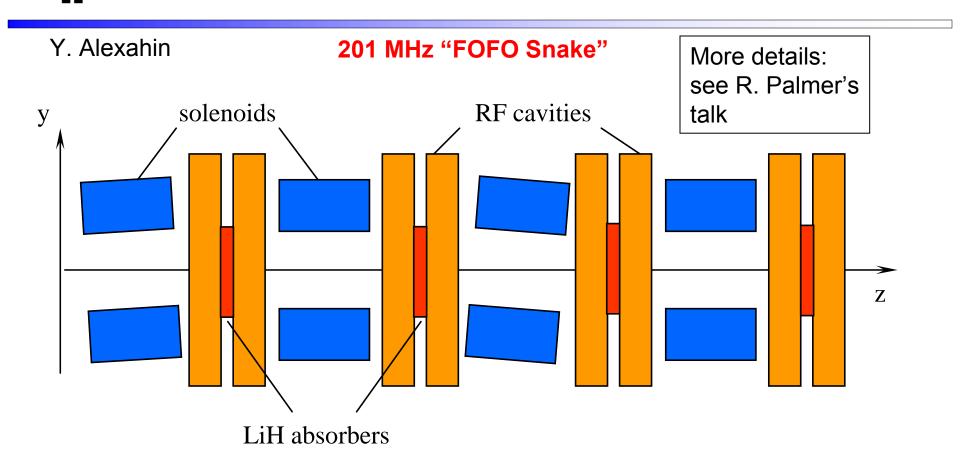
HTS CONDUCTOR & MAGNET R&D

Motivation


- Existing very high field resistive/SC hybrids solenoids → Megawatt power, one-of-a-kind, expensive to build/operate.
- Hybrid SC magnet with HTS insert proposed for end of cooling channel (Note: HTS solenoid insert operating at 25T already demonstrated).
- Muons Inc. with FNAL has initiated a small scale R&D activity.
- MCTF Plan→ Study magnet issues and study materials & properties as a function of field, field angle, & temperture, for fields >25T.

Progress

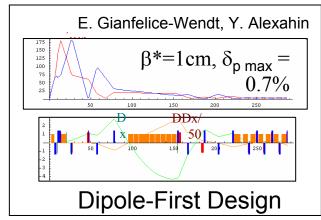
- Magnet challenges identified: stress management, conductor performance, quench protection → focus on conductor development
- Sample holder built, Ic vs B measured for several materials, up to 28T; made cable; Plans progressing for National Collaboration on HTS conductor development.


More details

- Conductor R&D: See S. Zlobin's talk
- National Collaboration: See A. Tollestrup's talk

ADDITIONAL COOLING CHANNEL STUDIES

Cell length =3.2 m, solenoid inner radius = 40cm, Bmax=2.4 T at p=100MeV/c HPRF cavities 2×16cm long, E=25MV/m, GH2 fill with density 10% of LH2 Emittance decrement 1/25m, equilibrium emittances ~3 π ·mm



COLLIDER RING DESIGN

- "High"- & "Low"- emittance Muon Collider designs have been proposed ... both have pros and cons.
 - Previous "High-emitt." design had insufficient dynamic aperture.
 - "Low-emittance" parameters are more speculative.

MCTF Progress

 New "dipole-first" scheme comes close to high-emitt. parameters (with sufficient dynamic aperture).

Plans

- Start preliminary detector-shielding studies to see if "dipole-first" scheme viable (background issues)
- Continue exploring possibilities for lower-emittance designs.

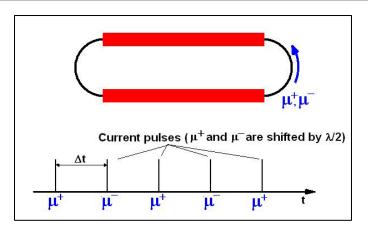
More details

See R. Palmer's Talk

PARAMETER STUDIES

Muon Collider Parameters

	Low Emit.	High Emit.	MCTF07
√s (TeV)	1.5		
Av. Lum (10 ³⁴ /cm ² /s) *	2.7	1	1.33-2
Av. Bending field (T)	10	6	G_{3}
Mean radius (m)	361.4	500	500
No. of IPs	4	25	2
Proton Driver Rep (Hz)	65	73	40-60
Beam-beam parmtr/IP	0.052	ս 	0.1
β* (cm)	0.5	1	1
Bunch length (cm)	0.5	1	1
No. bunches / beam 🐾	19	1	
No. muons/bunch /10 ¹	, 1	20	11.3
Norm. Trans. Er iit. (բո	n) 2.1	25	12.3
Energy sp 'e ɪd '%)	1	0.1	0.2
Norm long Emit. (m)	0.35	0.07	0.14
Total Rr voltage (GV)	407×10 ³	α _c 0.21**	0.84**
Muon survival Nμ/Nμ0	0.31	0.07	0.2
μ+ in collision / proton	0.047	0.01	0.03
8 GeV prtn beam power	er 3.62***	3.2	1.9-2.8


Wall Plug Power Estimates

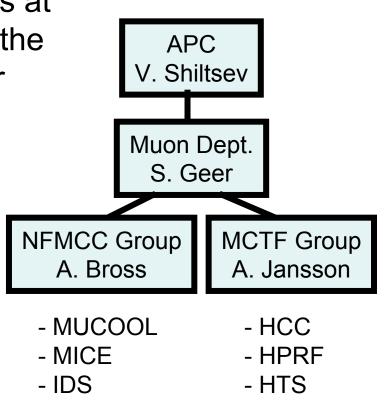
	MC1999	HE2008	HE2008	LE2008	LE2008
Collider cm Energy (TeV)	3	1.5	3	1.5	3
Luminosity (1e34)	7	1	3	3	3.5
Emittance (pi mm mmrad)	50	25	25	21	2.1
Rep rate (Hz)	15	13	8	65	32
Muons/beam (1e12)	8	2	2	1	1
PD beam power (MW)	4	4	2	3.6	8
Muon beam power (MW)	57.6	6.24	7.68	15.6	15.36
		<u>) </u>			
FOTAL wall plug power (MW):	204	60	83	166	158
PD (MW)	12.	16	11	68	35
Bunching Ring(s) (MV)		4	4	4	4
Target station (MV.')		1	1	1	1
Collection system (MW)		4	4	4	4
Cooling system (MW)		4	12	2	2
Acceleration (MW)	130	25	32	81	93
Beamlines		2	4	2	4

OTHER STUDIES

- First look at beam loading for acceleration of intense muon bunches using ILC cavities (V. Yakovlev, N. Solyak)
 - See Talks by R. Palmer & S. Berg

Physics Studies

- Last detailed MC physics study a decade ago
- Physics study group initiated (C. Hill & E. Eichten) with first miniworkshop held (5th March 2008)
- In coming year, will build on this activity and begin to update our understanding of detector/background requirements.
- See Talk by E. Eichten


Workshops

 Additional Low Emittance MC workshop this year co-organized with Muons Inc. & NFMCC (→ bi-annual ?), Workshop on DWA-ILA for muon acceleration (Feb 2008).

FUNDING FOR NFMCC & MCTF ACTIVITIES WITHIN FERMILAB

- All MCTF & NFMCC activities at Fermilab are pursued within the framework of the Accelerator Physics Center (APC) Muon Dept.
- Provides mechanism for allocating resources to support both NFMCC & MCTF activities at FNAL
- Worked well in this last (very tough) year

- etc

- etc

CURRENT BUDGET (M&S fully loaded)

APS Muon Dept. Resources (M\$)

	FY07 Spent	FY08 Allocated *
	4.4	4.1
M&S	1.1	0.9
SWF	3.3 **	3.2 **

*DoE specified funding cap on all muon accelerator R&D at Fermilab

** ~14 FTEs \rightarrow ~ 50% for MCTF & 50% for NFMCC activities

FY08 M&S DIRECT vs REQUEST

Activity	FY07 Spent	FY08 Allocated	FY08 Request
HCC Magnet	58	60	230 2)
HTS	0	50	200 ³⁾
MTA Beamline	573	220	300 4)
MUCOOL	50	160	280 5)
MICE	160	60	60
MCTF RF			120 ⁶⁾
6D HCC Section			100 7)
Travel	91	30	80 1)
TOTAL	932	580	1370

FY08 FUNDING REQUEST NOTES

- 1) Needed to meet travel needs associated with MICE
- 2) To move beyond initial "4 coil test" towards building an HCC section.
- 3) to exploit HTS conductor R&D momentum initiated with SBIR, and to push ahead with initiating a national HTS magnet collaboration needed to get our feet on the ground with this technology.
- 4) The MTA beamline estimate is 300k\$. Completing the beamline so that the first HPRF test can be made in FY08 is a priority.
- 5) Needed to complete the presently planned MUCOOL RF R&D in FY08 before the MICE solenoid arrives early FY09 (→ scheduling conflict)
- 6) Needed to extend the RF R&D to explore "magnetic insulation" against RF breakdown.
- 7) Needed to begin work towards bench testing an HCC 6D cooling section ... first step towards a 6D cooling experiment.

TOWARDS A 5 YEAR PLAN

- Have started working towards a joint NFMCC-MCTF 5 year plan
 - Many uncertainties about funding levels we should be planning for, but we have a first understanding of the resources needed to deliver "Muon Collider Feasibility Study" by FY011-12.
 - Activities at Fermilab would need to be ramped up significantly over the next few years (to support both NFMCC and MCTF activities). Our working model is:
 - Ramp up FNAL effort to 24 FTEs (SWF = 6M\$/yr)
 - Ramp up FNAL M&S to 3M\$/yr (assume total national investment (SWF+M&S) in NF+MC R&D ramped up to 25 M\$/year)
- We think a reasonable goal would be to have a joint NFMCC-MCTF draft 5-year plan by August
 - In a year we will know more about HCC, which will guide us in deciding what needs to be prototyped.

5 YEAR FUNDING MODEL (M\$)

MUON COLLIDER R&D at FERMILAB

Activity	FY09	FY10	FY11	FY12	FY13
Travel	100	100	100	100	100
MTA Tests & infrastructure	200	200	200	200	200
MUCOOL & MICE	300	300	30 0	300	300
6D Cooling Section	300	600	1000	2000	2000
HTS*)	21,3	300	400	400	400
M&S TOTAL	1100	1500	2000	3000	3000
S!VF (FTE)	4000 (18)	4500 (21)	5000 (22)	5500 (23)	6000 (24)

^{*)} Includes support for model magnet building at the national labs

SUMMARY

- MCTF has just completed its first year of activities
 - We have made a solid start within the present tight funding constraints
 - Progress documented in the MCTF "annual report"
- MCTF activities focused on R&D to inform "MC Feasibility Study", with main emphasis on 6D cooling channels & MC ring design
 - Complete 6D cooling scheme simulated end-to-end
 - RF tested in magnetic field & short cooling section bench-tested
 - MC ring design with parameters consistent with the cooling channel performance.
- To accomplish these goals on a reasonable timescale we believe we need to ramp up the support at FNAL over the next few years
 - Support NFMCC activities at FNAL plus MCTF activities → M&S ~ 3m\$/yr, SWF ~ 6M\$/yr (~24 FTEs).
 - Given the goals, we consider this to be the minimum support required.
 There is no contingency in our estimates (contingency= time).
 - Vital for our plans that MC R&D caps permit this growth.
 - Aim to have a joint NFMCC-MCTF draft 5 year plan by August (available for next MUTAC)