The Japanese Programs

Yoshitaka Kuno Osaka University

MUTAC review, Brookhaven National Laboratory April 18-19, 2007

Outline

- •FFAG-based muon acceleration for a Neutrino Factory
- International Collaboration
 MUCOOL in NFMCC
 - MICE
- Domestic Studies in Japan
 - •(Scaling) FFAG R&D in Japan
 - ADS FFAG at KURRI
 - ERIT FFAG at KURRI
 - PRISM at Osaka
- Summary

FFAG-based Scheme

- Japanese scheme of a neutrino factory is based on scaling FFAGs.
 - proposed in 2000.
 - a study report in 2001.
- series of FFAG rings
 - 0.3-1/1-3/3-10/10-20 GeV/c
- Advantages
 - large acceptance
 - quick acceleration
 - cooling is not a must (but better if cooling is available.

Historical Remark

International Collaboration

International Collaboration

• NFMCC

- The Japanese group has joined the MUCOOL studies for the past 7 years.
- Major contributions are the development of liquid hydrogen absorbers of convection type.
- MICE
 - The Japanese group has joined the MICE collaboration from the beginning.
- MERIT
- ISS/IDS Studies

LH2 Absorber R&D for MUCOOL

Liquid Hydrogen Absorbers

- Absorbers need long radiation length.
 - The best candidate is liquid hydrogen.
- Two types of cooling : convection type and forced flow type.
- Japanese contribution is for the convection driven type.
- PI is Shigeru Ishimoto (KEK).

Convection Absorber

- Convection is driven by beam power and internal heaters.
- Helium gas exchanger removes heats from the absorber wall.
- Advantages:
 simple, less LH2
- Disadvantages:
 - less cooling power.
 - need prototype tests.
 - MICE uses convection type.

Set-up of absorber test cryostat Electric cabinet purged by G-N₂

Top flange of absorber test cryostat

strino

1st Cooling Test at MTA/ FNAL

Results of 1st Cooling Test at MTA/FNAL

several LH2 absorber bath temperatures.

dT=2.3 K for 20 W
$$\rightarrow$$
 dT=9 K for 78 W
(T_{max}=23K, T_{min}=14K)

- •The 1st test of LH2 filling test was done at MTA in 2004.
- •The test showed that the temperature rise of 2.4 K for 20 W.
- •LH2 has 9 K range (Tmin=14K, Tmax=23K).
- •Heat of about 70 W can be taken.

2nd LH2 Filling Test at MTA

• Purpose :

- demonstration of 70 W or more cooling power.
- measurement of temperature and LH2 level more precisely.
- forced convection
- Improvements :
 - electric heaters (instead of gas heaters)
 - a shorter He transfer line
 - more thermometers
 - liquid level meter for LH2
- Wait for safety approval

LH2 Absorber with Heaters for 2nd Test (2006)

Window with Heater & Fun

Electric heater installed

Heater 100W max.

Absorber Assembly at FNAL Lab-6 (Jan. 2007)

CX-1050-SD

L-H2/LHe Level sensor in absorber

Pressure/ He Leak Test at FNAL Lab-6 (Jan. 2007)

US-Japan Program

- We got budget from the US-Japan program (between DOE and MEXT in Japan, and funded by MEXT).
- In JFY2007, the US-Japan program has been jeopardized. The whole budget became about a half, from 8 oku yen to 4 oku yen (oku=10⁸).
- Our application on MUCOOL for the US-Japan program (PI is Shigeru Ishimoto) for JFY 2007 has been turned down.
 It is mainly for R&D for LH2 absorbers.
 - However, can keep the KEK group (Shigeru Ishimoto et al.) working on MUCOOL and MICE, but no budget,
 - The program has continued for the past 7 years.
 - And, need to consider a new "good" proposal

MICE

SciFi Tracker R&D

- JP-MICE (Osaka, KEK) participates in SciFi trackers, and LH2 absorber (together with UK & US).
- Design and construction of Scintillating Fiber (SciFi) trackers
 - with FNAL and UK
 - fiber supply
- VLPC cryostat construction
 - with FNAL and UK
 - cryo-cooler cooling

SciFi Tests at KEK

- Beam test at KEK-PS was done in fall, 2005.
 - 4 SciFi stations
 - VLPC cryostat with a cryo-cooler.
 - solenoid mag. field (1T)
 - TOF&ACC for PID

Super JACEE Magnet

QA Test Preliminary

- QA procedure for transmission has been established.
- All the clear fibers and connectors are in hand.
- Production of wave guilds (made by clear fibers) will start soon.

LH2 Absorber R&D for MICE

20 litter absorber R&D at KEK

Cooling Power Test

FFAG R&D in Japan

Types of FFAG

Scaling type FFAG

- betatron tune : constant (zero chromaticity)
- non-linear field elements
 linear field elements

Non-scaling type FFAG

- betatron tune : not constant

Scaling FFAG R&D in Japan

• KEK

- 500 keV Proof-of-Principle (POP) machine (2000)
- •150 MeV proton FFAG (2006)
- KURRI, Kyoto University
 - Accelerator Driven System (ADS) (2007)
 - 3 FFAG rings + reactor
 - Accelerator based neutron source (ABNS) (2008)
 - ERIT (emittance/energy recovery internal target)
 - storage ring + internal target

Osaka University

- PRISM FFAG Ring (2007)
 - muon storage ring

FFAG Configuration for ADS system at KURII, Kyoto University

- Spiral focusing: 1^{s†} for ion accelerator in the world
- Acceleration by induction core: 1st for ion accelerator in the world
- Magnetic field by multi-coil:1^{s†} in the world
- Continuous injection by static field: 1^{s†} in the world

FFAG for ADS at KURRI, Kyoto University

Status of ADS FFAG Commissioning

Injector Ring (Spiralinduction FFAG)
completed in January, 2006.

- Booster Ring
 - completed June, 2006.
 - E=11.5 MeV, I=0.8 nA
- Main Ring
 - under commissioning

ABNS with Internal Target : FFAG-ERIT

- Accelerator based neutron source (ABNS)
- ERIT = Emittance/Energy Recovery Internal Target
- proton storage ring with cooling
- internal target

PRISM

- High muon intensity
 10¹¹-10¹²/sec
- High luminosityphase rotation
- High muon purityno pions
- Low energy68 MeV/c
- primarily, for a search for charged-lepton mixing (a muon-to-electron conversion process).

Phase Rotated Intense Slow Muon source

PRISM FFAG Ring

- use a FFAG ring to store muons.
 - phase rotation to make narrow energy spread
 eliminate pions.
- being constructed at Osaka University for 2003-2007.
- a scaling FFAG
 - large acceptance

Phase Rotated Intense Slow Muon source

PRISM FFAG ring construction has been started in 2003.

PRISM FFAG Magnets

- radial sector with C-type yoke
 - D-F-D triplet
- machined pole shape to create field gradient (k)
- trim coils for variable k values (future)
- vertical tune : F/D
- horizontal tune : k value
- magnetic field design : TOSCA
- Construction underway.

PRISM FFAG Magnet Construction

5 magnets have been completed. One more magnet will be constructed now.

Magnetic Field Measurements

- Magnetic field measurements for PRISM FFAG magnet has been made in spring, 2006.
- The measured field distribution has been compared with TOSCA calculation.
- Differences between them are less than 0,5%. It is within tolerance.

Alpha Particle Tracking with One Magnet Cell

One-cell Test Stand under Preparation

Alpha Particle Tracking with 6 Magnet Cells

PRISM FFAG Test at Osaka University

- Research Center for Nuclear Physics (RCNP), Osaka University has a cyclotron of 420 MeV. The energy is above pion threshold.
- A plan is to install the PRISM FFAG ring at RCNP, and inject muons, although a muon rate is small.
- Wait for funding.

International Collaboration

Summary

 The Japanese groups participate in the international collaboration on NuFACT R&Ds:

• MUCOOL, MICE, MERIT and ISS/IDS.

- FFAG-based muon acceleration for a neutrino factory was originally proposed in 2000, in Japan.
- Constructions and studies of various scaling-FFAGs are going in Japan.
 - ADS FFAG in KURRI,
 - ERIT FFAG in KURII,
 - PRISM FFAG at Osaka.

• Consider a new proposal to the US-Japan program.

End of My Talk.