

The High-Power Targetry R&D Program

K.T. McDonald *Princeton U. MUTAC Review BNL, April 18, 2007*

Targetry Web Page: http://puhep1.princeton.edu/mumu/target/

Why Targetry?

- Targetry $=$ the task of producing and capturing π 's and μ 's from proton interactions **with ^a nuclear target.**
- *•* **At ^a muon collider the key parameter is luminosity:**

$$
\mathcal{L} = \frac{N_1 N_2 f}{A} \mathbf{s}^{-1} \mathbf{cm}^{-2},
$$

[⇒] **Gain as square of source strength (targetry), but small beam area (cooling) is also critical.**

- *•* **At ^a neutrino factory the key parameter is neutrino flux,** [⇒] **Source strength (targetry) is of pre-eminent concern.** [Beam cooling important mainly to be sure the beam fits in the pipe.]
- *•* **Since its inception the Neutrino Factory/Muon Collider Collaboration has recognized the importance of high-performance targetry, and has dedicated considerable resources towards R&D on advanced targetry concepts.**
- *•* **The exciting results from atmospheric and reactor neutrino programs (Super-K, SNO, KamLAND) reinforce the opportunity for neutrino ^physics with intense accelerator neutrino beams, where targetry is ^a major challenge.**

High-Power Targets Essential for Many Future Facilties

KIRK T. MCDONALD MUTAC REVIEW, APR 18, 2007 3

The Challenges of High-Power Targetry

4-MW Proton Beam

- *•* **10-30 GeV appropriate for both Superbeam and Neutrino Factory.** \Rightarrow **0.8-2.5** $\times 10^{15}$ p ps; **0.8-2.5** $\times 10^{22}$ protons per year of 10^{7} s.
- Rep rate 15-50 Hz at Neutrino Factory, as low as 2 Hz for Superbeam.
	- \Rightarrow **Protons per pulse from 1.6** $\times10^{13}$ to 1.25 $\times10^{15}$.
	- \Rightarrow **Energy** per pulse from 80 kJ to 2 MJ.
- *•* **Small beam size preferred:**

 $\approx 0.1 \text{ cm}^2 \text{ for Neutrino } \text{Factory, } \approx 0.2 \text{ cm}^2 \text{ for Superbeam.}$

- [⇒] **Severe materials issues for target AND beam dump.**
	- *•* **Radiation Damage.**
	- *•* **Melting.**
	- *•* **Cracking (due to single-pulse "thermal shock".**

Radiation Damage is the Ultimate Limit

The lifetime dose against radiation damage (embrittlement, cracking,) by protons ${\bf f}$ **or** ${\bf m}{\bf o}{\bf s}$ ${\bf t}$ ${\bf s}$ ${\bf a}{\bf b}{\bf o}{\bf u}{\bf t}$ $10^{22}/{\bf cm}^2$.

 \Rightarrow Target lifetime of about 5-14 days at a Neutrino Factory (and 9-28 days at a **Superbeam).**

 \Rightarrow **Mitigate** by frequent **target** changes, moving **target**, liquid **target**, ...

Remember the Beam Dump

Target of 2 interaction lengths \Rightarrow 1/7 of beam is passed on to the beam dump.

Long distance from target to dump at ^a Superbeam,

- \Rightarrow **Beam** is much less focused at the dump than at the target,
- \Rightarrow **Radiation damage** to the **dump** not a critical issue (Superbeam).

Short distance from target to dump at ^a Neutrino Factory,

- \Rightarrow **Beam** still tightly focused at the dump,
- \Rightarrow Frequent changes of the beam dump, or a moving dump, or a liquid dump.

A liquid beam dump is the most plausible option for a Neutrino Factory, independent of the choice of target. (This is so even for a 1-MW Neutrino Factory.)

Pion Yield

Pion/Muon Yield, ^I

 ν **Superbeams** $\boldsymbol{\mathrm{need}}\;\boldsymbol{E_{\pi}} \approx 0.5$ -5 $\boldsymbol{\mathrm{GeV}},\;\nu$ Factories $\boldsymbol{\mathrm{need}}\;\boldsymbol{E_{\pi}} < 0.5$ $\boldsymbol{\mathrm{Gev}}.$

 $\mathbf{Ex:}\ \mathbf{Mercury}\ \mathbf{target}\ \mathbf{radius}\ \mathbf{should}\ \mathbf{be} \approx 5\ \mathbf{mm}.$

Pion/Muon Yield, II: Solenoid Capture

IF capture pions in a solenoid channel, should begin with a high-field "magnetic **bottle".**

Tilt target axis by ≈ 100 mrad to the magnetic axis to increase yield of soft, large-angle **pions.**

 ${\bf Can~ capture} \approx 0.3$ ${\bf pion~per~proton~ with} \,\, 50 < P_\pi < 400 \,\, {\bf MeV}/c.$

Target Topologies

Target and Capture Topologies: Toroidal Horn

The traditional topology for efficient capture of secondary pions is a toroidal "horn" **(Van der Meer, 1961).**

- \bullet Collects only one sign, \Rightarrow Long data runs, but nonmagnetic detector (Superbeam).
- *•* **Inner conductor of toroid very close to proton beam.**
	- \Rightarrow Limited life due to radiation damage at 4 MW.
	- [⇒] **Beam, and beam dump, along magnetic axis.**
	- [⇒] **More compatible with Superbeam than with Neutrino Factory.**

Carbon composite target with He gas

cooling (BNL study): Mercury jet target (CERN SPL study):

If desire secondary pions with $E_\pi \lesssim$ 5 GeV (Neutrino Factory), a high-Z target is ${\bf f}$ avored, but for $E_\pi\gtrsim10\,{\, {\rm GeV}}$ (some Superbeams), low Z is preferred. KIRK T. MCDONALD MUTAC REVIEW, APR 18, 2007 11

Target and Capture Topologies: Solenoid

Palmer (1994) proposed ^a solenoidal capture system for ^a Neutrino Factory.

- Collects both signs of π 's and μ 's, \Rightarrow Shorter data runs (with magnetic detector).
- *•* **Solenoid coils can be some distance from proton beam.**

⇒ > ∼ **4 year life against radiation damage at 4 MW.**

[⇒] **Proton beam readily tilted with respect to magnetic axis.**

 \Rightarrow **Beam dump** out of the way \mathbf{p} **of** \mathbf{p} **secondary** $\boldsymbol{\pi}$'s and $\boldsymbol{\mu}$'s.

Mercury jet target and proton beam tilt downwards with respect to the horizontal magnetic axis of the capture system.

The mercury collects in ^a pool that serves as the beam dump (Neutrino Factory Study 2):

A Neutrino Horn Based on ^a Solenoid Lens

Point-to-parallel focusing for

 $P_\pi=eBd/(2n+1)\pi c.$

[⇒] **Narrowband (less background) neutrino beams of energies**

$$
E_{\nu} \approx \frac{P_{\pi}}{2} = \frac{eBd}{(2n+1)2\pi c}.
$$

[⇒] **Can study several neutrino oscillation peaks at once,**

$$
\frac{1.27M_{23}^2[\mathbf{eV}^2] L[\mathbf{km}]}{E_{\nu}[\mathbf{GeV}]} = \frac{(2n+1)\pi}{2}.
$$

(Marciano, hep-ph/0108181)

(KTM, ^physics/0312022)

- \Rightarrow **Study** both ν and $\bar{\nu}$ at the same time.
- \Rightarrow Detector must identify sign of μ and e .
- [⇒] **Magnetized liquid argon TPC.**

(astro-ph/0105442).

(H. Kirk and R. Palmer, NuFACT06):

Solid Targets

THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION **Thermal Issues for Solid Targets, I**

The quest for efficient capture of secondary pions precludes traditional schemes to cool a solid target by a liquid. (Absorption by plumbing; cavitation of liquid.)

A solid, radiation-cooled stationary target in a 4-MW beam will equilibrate at about $2500 \text{ C.} \Rightarrow \text{ Carbon is only candidate for this type of target.}$

(Carbon target must be in He atmosphere to suppress sublimation.)

A moving band target (Ta, W, ...) could be considered (if capture system is toroidal).

Thermal Issues for Solid Targets, II

When beam pulse length t is less than target radius r divided by speed of sound $v_{\rm sound},$ **beam-induced pressure waves (thermal shock) are ^a major issue.**

Simple model: if $U=$ beam energy deposition in, say, Joules/g, then the instantaneous ${\bf t}$ **emperature** ${\bf r}$ **ise** ΔT **is given by**

$$
\Delta T = \frac{U}{C}, \quad \text{where } C = \text{heat capacity in Joules/g/K.}
$$

The <code>temperature</code> rise leads to a strain $\Delta r/r$ given by

$$
\frac{\Delta r}{r} = \alpha \Delta T = \frac{\alpha U}{C},
$$
 where α = thermal expansion coefficient.

 \bf{T} he strain leads to a stress P (= $\bf{force/area})$ given by

$$
P = E \frac{\Delta r}{r} = \frac{E \alpha U}{C},
$$
 where E = modulus of elasticity.

 ${\bf In\ many\ metals,\ the\ tensile\ strength\ obeys\ } P \approx 0.002E,\ \alpha \approx 10^{-5},\ {\rm and}\ \ C \approx 0.3\ {\bf J/g/K,}$ **in which case** 0.002×0.3

$$
U_{\text{max}} \approx \frac{PC}{E\alpha} \approx \frac{0.002 \cdot 0.3}{10^{-5}} \approx 60 \text{ J/g}.
$$

 \Rightarrow Best candidates for solid targets have high strength (Vascomax, Inconel, TiAl6V4) **and/or low thermal expansion (Superinvar, Toyota "gum metal", carbon-carbon composite).**

KIRK T. MCDONALD MUTAC REVIEW, APR 18, 2007 16

A Carbon Target is Feasible at 1-2 MW Beam Power

Low energy deposition per gram and low thermal expansion coefficient reduce thermal **"shock" in carbon.**

Operating temperature > 2000**C if use only radiation cooling.**

A carbon target in vacuum would sublimate away in 1 day at 4 MW, but sublimation **of carbon is negligible in ^a helium atmosphere.**

 \bf{R} \bf{a} \bf{b} \bf{a} \bf{b} \bf{b} \bf{c} \bf{b} \bf{c} \bf{b} \bf{c} \bf{b} \bf{c} $\bf{c$

 \Rightarrow Carbon target is baseline design for most neutrino superbeams.

Useful pion capture increased by compact, high-Z **target,** [⇒] **Continued R&D on solid targets.**

How Much Beam Power Can ^a Solid Target Stand?

How many protons are required to deposit ⁶⁰ J/g in ^a material?

What is the maximum beam power this material can withstand without cracking, for **^a 10-GeV beam at 10 Hz with area 0.1 cm** 2**.**

Ans: If we ignore "showers" in the material, we still have dE/dx ionization loss, ${\bf of~about~1.5~MeV/g/cm^2}.$

 ${\bf Now,\ 1.5\,\ MeV} = 2.46\times 10^{-13}$ J, so ${\bf 60\,\ J}/\,$ g requires a proton beam intensity of $60/(2.4 \times 10^{-13}) = 2.4 \times 10^{14}/\text{cm}^2$.

 ${\bf So,\,} P_{\rm max}\approx10\,\,{\bf Hz}\cdot10^{10}\,\,{\bf eV}\cdot1.6\times10^{-19}\,\,{\bf J/eV}\cdot2.4\times10^{14}/{\bf cm}^2\cdot0.1\,\,{\bf cm}^2\approx4\times10^5\,\,{\bf J/s}\,=\,{\bf 0.4\,\,MW}.$

If solid targets crack under singles pulses of 60 J/g, then safe up to only 0.4 MW **beam power!**

Empirical evidence is that some materials survive 500-1000 J/g, \Rightarrow May survive 4 MW if rep rate $\gtrsim 10$ Hz.

Ni target in FNAL p**bar source: "damaged but not failed" for peak energy deposition** of 1500 J/g.

THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION **Lower Thermal Shock If Lower Thermal Expansion Coefficient**

ATJ graphite and ^a 3-D weave of carbon-carbon fibers instrumented with fiberoptic strain

 ${\bf sensors,}$ and ${\bf exposed\ to\ pulses\ of}\ 4\times 10^{12}\ {\bf protons}$ **@ 24 Gev.**

Thermal expansion coefficient of engineered materials is affected by radiation.

Super-Invar: CTE *vs.* **dose:**

Fabry-Perot cavity length

Gauge length

Incoming optical fiber

Carbon-carbon composite showed much lower strains than in the ordinary graphite – but readily damaged by radiation!

Super-Invar: recovery of the CTE by thermal annealing:

KIRK T. MCDONALD MUTAC REVIEW, APR 18, 2007 19

Recent/Ongoing Solid Target Projects

CNGS Target System (R. Bruno, NuFact06) $\mathbf{Up} \text{ to } 7 \times 10^{13} \text{ } 400\text{-GeV}$ **protons every 6 s.** $\textbf{Beam}\ \sigma=0.5\ \textbf{mm}.$ **5 interchangeable graphite targets. Designed for 0.75 MW.**

JPARC ^ν **Horn Target (Y. Hayato, NuFact06)** $\mathbf{Up} \text{ to } 4 \times 10^{14} \text{ } 50\text{-GeV}$ **protons every 4 s.** $\textbf{Beam} \ \sigma = 4 \ \textbf{mm}.$ **Designed for 0.75 MW. He gas cooling.**

Pulsed-Current Studies of Ta & W Wires at RAL (R. Bennett *et al.* **)**

Vacuum chamber 2×10-7-1×10-6 mbar

Liquid Jet Targets

A. Calder, Paris (1937):

Now at Fundaci´o Joan Mir´o, Barcelona

Beam-Induced Cavitation in Liquids Can Break Pipes

Hg in ^a ^pipe (BINP):

ISOLDE:

Cavitation pitting of SS wall surrounding Hg target after ¹⁰⁰ pulses (SNS):

Water jacket of NuMI target developed a leak after \approx 1 month. **Likely due to beam-induced cavitation.**

Ceramic drainpipe of water cooling system of CNGS horn failed after 2 days operation at high *beam power. (Not directly ^a beam-induced failure.)*

\Rightarrow Use free liquid jet if possible.

How Snapping Shrimp Snap: Through Cavitating Bubbles M. Versluis, Science 289, ²¹¹⁴ (2000).

Beam-Induced Effects on ^a Free Liquid Jet

Beam energy deposition may disperse the jet.

FRONTIER simulation predicts breakup via filamentation on mm scale:

Passive Mercury Target Tests (BNL-CERN, 2001-2002)

Two pulses of ≈ 250 ns give larger dispersal velocity only if separated by $< 3 \ \mu\text{s}$.

KIRK T. MCDONALD MUTAC REVIEW, APR 18, 2007 25

Studies of Proton Beam + Mercury Jet

 $\mathbf{Data:}~~ v_\text{dispersal} \approx 10~\mathbf{m/s}~\mathbf{for}~~ U \approx 25~\mathbf{J/g}.$

^vdispersal **appears to scale with proton intensity.**

The dispersal is not destructive.

 $\bf{Filaments~appear~only} \approx 40~\mu\bf{s}~after~beam,$ \Rightarrow After several bounces of waves, OR $v_{\rm sound}$ very low. KIRK T. MCDONALD MUTAC REVIEW, APR 18, 2007 26

Hydrodynamics of Liquid Jet Targets

- **Diameter** $d = 1$ **cm.**
- Velocity $v = 20$ m/s.
- *•* **The volume flow rate of mercury in the jet is**

Flow Rate =
$$
vA = 2000 \text{ cm/s} \cdot \frac{\pi}{4}d^2 = 1571 \text{ cm}^3/\text{s} = 1.57 \text{ l/s} = 0.412 \text{ gallon/s}
$$

= 94.2 $\text{l/min} = 24.7 \text{ gpm.}$ (1)

• **The power in the jet (associated with its kinetic energy) is**

Power =
$$
\frac{1}{2}\rho \cdot \textbf{Flow Rate} \cdot v^2 = \frac{13.6 \times 10^3}{2} \cdot 0.00157 \cdot (20)^2 = 4270 \text{ W} = 5.73 \text{ hp.}
$$
 (2)

• To produce the $20-m/s$ jet into air/vacuum out of a nozzle requires a pressure

Pressure =
$$
\frac{1}{2}\rho v^2 = 27.2
$$
 atm = 410 psi, (3)

IF no dissipation of energy.

• The mercury jet flow is turbulent: the viscosity is $\mu_{\rm Hg} = 1.5$ cP (kinematic viscosity $\eta = \mu/\rho = 0.0011 \text{ cm}^2/\text{s}$), so the Reynolds number is

$$
\mathcal{R} = \frac{\rho dv}{\mu} = \frac{dv}{\eta} = 1.8 \times 10^6. \tag{4}
$$

• The surface tension of mercury is $\tau = 465 \text{ dyne/cm}$ (water = 73), \Rightarrow

Weber number,
$$
W = \frac{\rho dv^2}{\tau} = 115,000.
$$
 (5)

KIRK T. MCDONALD MUTAC REVIEW, APR 18, 2007 27

Hg jet for Neutrino Factory: $v = 20$ **m/s,** $d = 1$ **cm,** \Rightarrow Turbulent flow.

Lore:

- *•* **Should be able to make ^a 1-cm-diameter Hg jet go 1-2 ^m before breakup.**
- *•* **Area of feed should be** $\gtrsim 10\times$ area of nozzle.
- $\bullet \approx 15^{\circ}$ nozzle taper is good.
- *•* **Nozzle tip should be** $\textbf{straight}, \text{ with } \approx 3:1 \text{ aspect}$ **ratio.**
- *•* **High-speed jets will have ^a halo of spray around ^a denser core.**
- *•* **Low/zero surrounding gas pressure is better.**

Nozzle Lore

 10

 \mathbf{g}

Length of nozzle straight section l (nozzle diameters)

 $100³$

from Distance

(1974):

ig. 5. Effect of nozzle design on the stability of glycerol-water jets

Leach & Walker:

 (e) X-ray source (5 min exposure); pressure 130 atm

KIRK T. MCDONALD MUTAC REVIEW, APR 18, 2007 28

Magnetic Issues for Liquid Metal Jet Targets

Conducting materials that move through nonuniform magnetic field experience eddy- $\text{current effects,} \Rightarrow \text{Forces on entering or leaving a solenoid (but not at its center).}$

 \Rightarrow Free jet of radius r cannot pass through a horizontal solenoid of diameter D unless

$$
v > \frac{3\pi\sigma r^2B_0^2}{32\rho D} \approx 6\left[\frac{r}{1 \text{ cm}}\right]^2 \text{ m/s}, \quad \text{ for Hg or Pb-Bi jet, } D = 20 \text{ cm}, B_0 = 20 \text{ T}.
$$

 $50\text{-}\mathrm{Hz}$ rep rate requires $v\,=\,20\,$ m/s for new target each pulse, so no problem for baseline design with $r = 0.5$ cm. The associated eddy-current heating is negligible.

[Small droplets pass even more easily, and can fall vertically with no retardation.]

A liquid jet experiences ^a quadrupole shape distortion if tilted with respect to the solenoid axis. This is mitigated by the upstream iron plug that makes the field more uniform.

Magnetic damping of surface-tension waves (Rayleigh instability) observed in CERN-Grenoble tests (2002).

The beam-induced dispersal will be partially damped also (Samulyak).

Computational Magnetohydrodynamics (R. Samulyak, J. Du)

Use an equation of state that supports negative pressures, but gives way to cavitation.

Thimble splash at 0.24, 0.48, 0.61, 1.01 μ **s**

Magnetic

damping of

beam-induced

filamentation:

THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION **The Shape of ^a Mercury Jet under ^a Non-uniform Magnetic Field**

Bou = $0T$ $M = 0$, $W = 496$

 (c)

Bou = $1.88T$ $(Na = 0.57 , Wa = 496)$

 (b) $\text{Na} = 1.41\text{T}$
 $\text{Na} = 0.29$, $\text{Wa} = 496$)

Bou = 2.02T
($\text{Na} = 0.60$, $\text{Wa} = 496$

Fig. 9 Photographs of the jet for various applied mag- netic field strengths

Fig. 10 Cross-sectional shape of the jet obtained by spot a electrode probe

S. Oshima *et al.***, JSME Int. J. 30, ⁴³⁷ (1987).**

G Jet Noncontact O O O O indicator $\bigcircled{{\mathbb A}}$ DC Supply LED Contact indicator ℺ Ammeter

KIRK T. MCDONALD MUTAC REVIEW, APR 18, 2007 31

E

Simulations of Shape Distortion

Incompressible code with free liquid surface confirms predictions of shape distortion of ^a liquid mercury jet that crosses magnetic field lines. (N. Morley, M. Narula; HIMAG).

Mitigate with good uniformity of magnetic field:

20-T Capture Magnet System (^ν **Factory Study 2)**

Inner, hollow-conductor copper coils generate 6 T @ 12 MW:

Bitter-coil option less costly, but marginally feasible.

Outer, superconducting coils generate 14 T @ 600 MJ:

Cable-in-conduit construction similar to ITER central solenoid.

Both coils shielded by tungsten-carbide/water.

Target System Support Facility

Extensive shielding; remote handling capability.

Lifetime of Components in the High Radiation Environment

Some components must be replaceable.

Summary

THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION **What Have We Learned?**

- Solid targets are viable in pulsed proton beams of up to 1-2 MW.
- Engineered materials with low coefficients of thermal expansion are desirable, but **require further qualification for use at high radiation dose.**
- A mercury jet appears to behave well in a proton beam at zero magnetic field, and **in ^a high magnetic field without proton beam.**

Issues for Further Targetry R&D

- *•* **Continue numerical simulations of MHD + beam-induced effects (J. Du).**
- For solid targets, study radiation damage $-$ and issues of heat removal from solid metal targets (carbon/carbon, Toyota Ti alloy, bands, chains, etc.) (N. Simos, **R. Bennett).**
- Proof-of-Principle test of an intense proton beam with a mercury jet inside a **high-field magnet (CERN MERIT experiment, H. Kirk, V. Graves, H.-J. Park).**
	- **1. MHD effects in ^a prototype target configuration.**
	- **2. Magnetic damping of mercury-jet dispersal.**
	- **3. Beam-induced damage to jet nozzle – in the magnetic field.**
- Pb-Bi liquid metal targets: solid at room temp, less subject to boiling.

CERN nToF11 Experiment (MERIT)

- The MERIT experiment is a proof-of-principle demonstration of a free mercury jet target for a 4-megawatt proton beam, contained in a 15-T solenoid for maximal **collection of soft secondary pions.**
- *•* **MERIT ⁼ MERcury Intense Target.**
- *•* **Key parameters:**
	- 24-GeV Proton beam pulses, up to 16) bunches/pulse, up to 2.5×10^{12} $p/\text{bunch.}$
	- $-\sigma_r$ of proton bunch = 1.2 mm, proton beam axis at 67 mrad to magnet axis.
	- Mercury jet of 1 cm diameter, $v = 20$ m/s, jet axis at 33 mrad to magnet axis.
	- \Rightarrow Each proton intercepts the Hg jet over 30 cm = 2 interaction lengths.
- *•* **Every beam pulse is ^a separate experiment.**
	- \sim 100 **Beam** pulses in total.
	- **– Vary bunch intensity, bunch spacing, number of bunches.**
	- **– Vary magnetic field strength.**
	- **– Vary beam-jet alignment, beam spot size.**

CERN nToF11 Experiment (MERIT)

KIRK T. MCDONALD MUTAC REVIEW, APR 18, 2007 39

High-Power Target Workshops Sponsored by the NFMCC

• **Ronkonkoma (2003)**

http://www.cap.bnl.gov/mumu/conf/target-030908/agenda.xhtml

• **ORNL (2005)**

http://www.cap.bnl.gov/mumu/conf/target-051010/agenda.html

• **PSI (Sept 10-14, 2007)**

http://asq.web.psi.ch/hptrgts/index.html

