

Theory and Simulations: Introduction and Plans

R.C. Fernow BNL

MUTAC Review LBNL

25 April 2005

Outline of MC simulation activities

- design simulations for future muon-based facilities
 - 1) front end

```
neutrino factory
phase rotation optimization (A. Poklonskiy, PhD)
tabletop ring coolers
muon collider
2) acceleration (S. Berg)
```

• related simulation efforts in the collaboration

```
targetry (R. Samulyak)
MICE (D. Kaplan)
Muons Inc. (R. Johnson)
```

theory

Theory and simulation committee

R. Fernow (BNL) Chair

H. Kirk (BNL) Targetry coordinator

D. Neuffer (FNAL) Front end systems coordinator

S. Berg (BNL) / Acceleration coordinators

C. Johnstone (FNAL)

A. Sessler (LBNL) Theory coordinator

M. Berz (MSU)

E. Keil (CERN)

R. Palmer (BNL)

S. Koscielniak (TRIUMF)

Major responsibilities

consult as necessary on important simulation matters organize topical workshops

Simulation activities

topical workshops

Gas-filled dipole rings	BNL	June 2004
Ring coolers	UCLA	September 2004
Higgs factory	UCLA	October 2004
FFAG	KEK	October 2004
Muon collider simulations	Miami	December 2004
FFAG	FNAL	April 2005

- code development
- MC Friday audio conference
- Collaboration meeting
- talks at conferences
- publications in refereed journals

Study 2a Front End

- objective: significant cost reduction from FS2 neutrino factory
- major new elements
 - (1) adiabatic RF bunching and phase rotation (D. Neuffer, FNAL)
 - eliminate induction linacs
 - (2) new linac front end with $A_{TN} = 30$ mm acceptance (R. Palmer et al)
 - (3) new simplified cooler design (R. Palmer, BNL)
 - fewer components
 - lower magnetic field

Results of Study 2a

- obtained $\mu / p = 0.170 \pm 0.004$ into accelerator acceptance
- get same number of muons as Study 2
- but this design gives muons of <u>both</u> signs
 - gain of a factor of up to 2 in neutrino flux

Gas-filled cooling channel

- looking for further improvements: Study 2b
- β_T is fairly constant in the Study 2a cooling channel
- try replacing LiH with high-pressure H₂ gas as the absorber
- may be possible to find parameters that achieve better performance

- low temperature allows thinner windows (P = 50 atm)
- used hemispherical steel pressure windows (5.5 mm thick)

(J. Gallardo, BNL)

Modeling of a scaling FFAG

- can we use systems from other designs?
- simulated PRISM scaling-FFAG in ICOOL
- got flat x and y tunes vs. momentum
- studied effects of different end-field shapes
- studied effects of radial field dependence

(R. Palmer, BNL)

- continue investigating refinements to Study 2b
 - e.g. shortening the phase rotator
 - slightly tapering the cooler parameters
 - thermal properties of absorber windows
- try to incorporate any promising new developments
 - e.g. gas-filled channel
- try to incorporate aspects of the European or Japanese designs
- perform "scoping" simulations for World Design Study

Dipole ring cooler (1)

- developed successful design algorithm
 - 1) design initial lattice using SYNCH
 - 2) parameter optimization with ICOOL (hard edge mode)
 - 3) realistic fields with TOSCA, ICOOL (multipole mode)

• 4-sector, weak focusing ring

(H. Kirk, BNL)

- H_2 gas filled (β_T small and constant)
- f=201 MHz, h=3, C=3.8 m, P=40 atm at room temperature

Dipole ring cooler (2)

- 4-cell weak focus ring was simulated with realistic fields
- shaped pole pieces increase horizontal dynamic aperture
- SBIR phase II for complete engineering design of ring and dipole prototype

blue -coils only

(S. Kahn, BNL)

25 April 2005

R. Fernow – MUTAC Review

Anti-cyclotron ring

- might be possible to eject low-emittance, stopped beam
- inject muons into gas-filled ring
- let beam cool by spiraling into center
- B=3 T, p=105 MeV/c, P=50 atm
- ionization injection studies with ICOOL underway
- use graded density, higher on outside

(D. Summers, UMiss)

- continue studies of small rings
 - gas-filled dipole ring
 - anti-cyclotron ring
- complete the realistic field modeling
- optimize ring and beam parameters
- continue studies of injection (extraction?)

Muon collider simulations

- there is no complete, self-consistent design for front-end of muon collider
- caveat emptor
 - doesn't show transmission losses
 - technical feasibility varies
 - quality of simulations varies

Collider front-end studies

RC

LP

PR

- looking at front-end designs with ring coolers
- maximize transmission in ring acceptance
- equal numbers of μ^+ and μ^-
- use bent solenoids to separate charged beams
- get $0.28 \mu/p$ for both charge beams

R. Fernow – MUTAC Review

Near-term plans – muon collider

- study collider system design based on using ring coolers
 - e.g. study realistic injection/extraction systems for rings
 - design required 6D precooler
 - study thermal issues for ring absorbers
 - study lithium lens cooling
 - bunch train coalescence
- available manpower to work on this is limited

Summary

- have active program of front-end simulations
- major thrust: neutrino factory
 - Study 1 → Study 2 → Study 2a → Study2b → WDS
- tabletop ring cooler
- muon collider
- made progress in all areas last year
- have plans for continuing this work in the coming year