# **Acceleration System**

J. Scott Berg Brookhaven National Laboratory MUTAC Review 25 April 2005



### **Acceleration System Goals**



- ullet Accelerate muons from cooling (momentum 200 MeV/c) to storage ring (total energy  $\gtrsim$  20 GeV)
- Accelerate rapidly to minimize decay
- Minimize dynamic particle loss
- Minimize emittance growth (longitudinal and transverse)
- Keep costs down



### Linac







#### Linac



- Low energy requires short, inefficient cells for transverse acceptance
  - Shorter cells than Study II: larger transverse acceptance
  - Don't use for most acceleration
- In RLA, each pass through linac must have nearly the same velocity; otherwise RF gets out of sync
  - Stay in first linac until reach sufficient energy
- Since lower energy, use solenoid focusing
- Have complete design
- Longitudinal acceptance is tight. To increase acceptance
  - Go to higher field, shorter solenoids at start, reducing cell length
  - Start further off-crest (but this increases linac length)



# **Linac Cryostats**







#### **Linac Parameters**



| Period length (m)       | 3   | 5   | 8   |
|-------------------------|-----|-----|-----|
| Cavities per period     | 1   | 1   | 2   |
| Cells per cavity        | 1   | 2   | 2   |
| Periods                 | 12  | 18  | 22  |
| Average gradient (MV/m) | 3.8 | 4.5 | 5.6 |
| Max solenoid field (T)  | 1.5 | 1.9 | 3.9 |



## **Linac Longitudinal Acceptance**







#### Matching



- Need to match from cooling to acceleration
- Beta functions somewhat different
  - Not as different as in Study II (cooling went up, linac went down)
  - Thus much simpler
- Need to accelerate a bit also
  - SC linac started at  $p=273~{\rm MeV}/c$  due to acceptance concerns (cooling at 200 MeV/c)
- Use combination of cooling cavities and SC cavities
  - Gradually increase cell length in cooling cavities
  - Do matching over a large momentum range
- Result: pretty good transmission (3% loss)



## **Matching Section**







#### **Linac: Next Steps**



- Do tracking with real magnet end fields, looking for emittance growth
- Do tracking in 6-D
- Integrate matching design with linac design
- Try to improve longitudinal acceptance
  - Shorter linac cells
  - Improved RF phase profile



## **Dogbone RLA**







#### **Dogbone RLA**



- FFAGs inefficient at low energies; use RLA
- Use dogbone over racetrack due to
  - Better energy separation at switchyard
  - More cost effective (?)
- Triplet lattice, 2 cavities per cell (larger acceptance)



- Switch to FFAGs when they become more cost effective
- Most of the pieces are there, but still needs to be finished off



### **Dogbone RLA: Next Steps**



- Finish off the existing design, and get component specifications
- Do 6-D tracking through the machine
- Optimize number of turns



#### 5-10 GeV FFAG







#### 10-20 GeV FFAG







#### **FFAGs: Previous Work**



- Had used an early version of an optimization procedure to determine FFAG designs
- Using triplet designs, had done
  - Injection/extraction scheme
  - Tracking study
- There is a wide collaboration interested in FFAGs
  - InternationI (Canada, Europe, Japan)
  - Frequent workshops (twice per year)
  - Desire to build a model of the new type of FFAGs considered for muon acceleration (next talk)



#### **FFAG Optimization**



- Choose FFAG machine parameters by minimizing a cost function
- We have made improvements to the cost function in the last year
  - Changed magnet cost model so that zero-field magnets with nonzero size have nonzero cost
  - Assigned a cost to decays
    - \* Minimum-cost rings had unacceptable decays
    - ⋆ Use detector cost as a baseline: for given performance, can make acceleration more efficient or make detector larger
- These changes cause fields to be higher than before
- Doublets are the most cost effective (as we've always found), compared with triplets, FODO



### **Lattice Parameters**



| Gradient (MV/m)            | 17   |      |      |  |
|----------------------------|------|------|------|--|
| Minimum total energy (GeV) | 2.5  | 5    | 10   |  |
| Maximum total energy (GeV) | 5    | 10   | 20   |  |
| No. of cells               | 50   | 65   | 82   |  |
| D length (cm)              | 63   | 77   | 97   |  |
| D radius (cm)              | 13.4 | 10.0 | 7.4  |  |
| D pole tip field (T)       | 4.5  | 5.7  | 7.1  |  |
| F length (cm)              | 96   | 113  | 141  |  |
| F radius (cm)              | 21.2 | 16.3 | 13.1 |  |
| F pole tip field (T)       | 2.7  | 3.5  | 4.3  |  |
| No. of cavities            | 42   | 49   | 56   |  |
| RF voltage (MV)            | 534  | 620  | 704  |  |
| Turns                      | 4.7  | 8.2  | 15.0 |  |
| Circumference (m)          | 204  | 286  | 400  |  |
| Decay (%)                  | 4.2  | 5.1  | 6.5  |  |
| Total cost (PB)            | 74.8 | 79.5 | 88.9 |  |
| Cost per GeV (PB/GeV)      | 29.9 | 15.9 | 8.9  |  |



#### **Other Optimization Results**



- Costs vs. Gradient
  - ◆ Relatively weak dependence on gradient in 10–17 MV/m range
  - Assumption is that only RF power costs increase with gradient
    - ★ If this is wrong (e.g., extra cryo costs, increased structure costs), cost benefit of 17 MV/m over 10 MV/m may be lost
- Costs vs. Transverse Acceptance
  - Cost depends strongly on acceptance
  - To do next: optimize cooling length and acceleration aperture together, considering decay cost



#### FFAG Cost vs. RF Gradient







## BROOKHAVEN FFAG Cost vs. Transverse Acceptance





#### **Longitudinal Parameter Choice**



Longitudinal motion in muon FFAGs described by two parameters

$$a = qV/\omega\Delta T\Delta E \qquad b = T_0/T$$

- As a reduces, get more longitudinal distortion
- Choice of a drives the FFAG design
- We have developed a technique for computing distortion from ellipticity as a function of these parameters
  - Get optimum phase space ellipse orientation in the process



## **Longitudinal Motion in FFAG**







## Time-of-Flight in an FFAG







#### **Stages in FFAGs**



- Different numbers of stages to get from 2.5 to 20 GeV
- 2 stages significantly more expensive than 3
- 3 stages wins slightly over 4
  - Machine cost slightly lower for 4, but decays make 4 stages worse
  - Extra cost of transfer line also adds to 4 stage cost
  - Prefer fewer stages to more



# **Stages in FFAGs: Table**



| Number of stages         | 4     |      |      | 3     |      |      | 2     |       |       |
|--------------------------|-------|------|------|-------|------|------|-------|-------|-------|
| Min. total energy (GeV)  | 2.5   | 4.2  | 7.1  | 11.9  | 2.5  | 5.0  | 10.0  | 2.5   | 7.1   |
| Max. total energy (GeV)  | 4.2   | 7.1  | 11.9 | 20.0  | 5.0  | 10.0 | 20.0  | 7.1   | 20.0  |
| Number of cells          | 34    | 38   | 46   | 57    | 50   | 63   | 82    | 101   | 152   |
| Number of cavities       | 26    | 30   | 35   | 38    | 42   | 48   | 56    | 88    | 97    |
| RF voltage (MV)          | 331   | 382  | 434  | 477   | 534  | 606  | 704   | 1114  | 1230  |
| Turns                    | 5.2   | 7.6  | 11.4 | 17.7  | 4.7  | 8.5  | 15.0  | 4.2   | 11.3  |
| Circumference (m)        | 144   | 174  | 228  | 306   | 204  | 279  | 400   | 389   | 653   |
| Decay (%)                | 3.6   | 3.8  | 4.4  | 5.4   | 4.2  | 5.1  | 6.5   | 5.8   | 9.1   |
| Machine cost (PB)        | 53.0  | 56.7 | 61.5 | 68.1  | 74.8 | 78.9 | 88.9  | 138.1 | 142.0 |
| per GeV (PB/GeV)         | 31.1  | 19.8 | 12.8 | 8.4   | 29.9 | 15.8 | 8.9   | 30.2  | 11.0  |
| Marginal decay cost (PB) | 18.0  | 18.9 | 21.9 | 27.1  | 21.1 | 25.6 | 32.3  | 28.9  | 45.5  |
| Total machine cost (PB)  | 239.3 |      |      | 242.7 |      |      | 280.1 |       |       |
| Total decay cost (PB)    | 85.9  |      |      | 78.9  |      |      | 74.5  |       |       |



### **FFAG Magnets**



- Preliminary design of FFAG magnet was done for costing purposes (Caspi/Hafalia)
- Did design with separate dipole/quadrupole layers
- J-PARC 50 GeV proton line, have built a SC single-layer combined-function magnet: uses less coil





#### Other Types of FFAGs



- FFAGs with warm magnets may be more cost-effective at low energy
- FFAGs with nonlinear magnets are also being looked at
  - Concern: poor dynamic aperture due to nonlinear magnets
  - Graeme Rees has proposed a lattice which is much more isochronous than our lattices



- ⋆ Lower RF requirement and/or shorter lattice
- ⋆ Currently has dynamic aperture problems, but it doesn't seem too far off (tracking by François Méot)



#### **FFAGs: Next Steps**



- Re-do optimization with consideration for longitudinal distortion calculation
  - ◆ For given a, choice of b gives tradeoff between acceptance and decay
- Use optimization procedure to choose dividing point between stages
- Injection/extraction scheme with doublet lattice
- Do tracking studies with chosen lattices
- Get a more detailed magnet design



## **Full Machine**







#### **Overall: Next Steps**



- Understand parametric dependence of designs of all stages (e.g., dependence on acceptance)
- Develop method for choosing when to switch stages
- Develop transfer line designs
- 6-D tracking through entire system