MAP Design & Simulation
Overview

R.C. Fernow
Brookhaven National Laboratory
MAJOR D&S GOALS

- provide sufficient design & simulation effort to demonstrate
 - feasibility of a 25 GeV NF in FY14
 - feasibility of a 1.5 TeV MC in FY16
- provide complete description of all major facility subsystems
- optimize performance of all subsystems
- do end-to-end simulations of beam behavior
- provide best estimate of expected machine performance
- estimate uncertainties in performance & tolerances in machine parameters
- provide required part counts for preliminary costing
- identify items that need additional R&D
Design & Simulations (Rick Fernow, BNL)
 1. Proton Driver (Keith Gollwitzer, FNAL)
 2. Front End (Harold Kirk, BNL)
 3. Cooling (Tom Roberts, Muons Inc.)
 4. Acceleration (J. Scott Berg, BNL)
 5. Collider Ring (Yuri Alexahin, FNAL)
 6. Machine-Detector Interface (Nikolai Mokhov, FNAL)
MACHINE CONFIGURATIONS

• proposal identifies “Initial Design Configurations”
 - provide a concrete example of what the facilities might look like
 - try not to confuse outsiders by showing all possible options

• milestones aim to define “Interim Design Configurations”
 - result of optimization studies, engineering considerations, and experimental measurements
 - design will be used for the Interim Design Reports

• results of interim studies will lead to more-detailed “Final Design Configuration”
 - design will be used for Final Design Reports
 - use for costing
NF INITIAL CONFIGURATION

- proton driver 4 MW + structure rings
- target liquid Hg jet
- decay - precooling enhanced Study 2a
- acceleration linac + 2 RLAs + FFAG
- storage rings 2 racetracks with long straight sections

Design performance
5 10^{20} muon decays per year per baseline
two detector baselines
MC INITIAL CONFIGURATION

- proton driver: enhanced Project X
- target: same as NF
- decay thru precooling: same as NF
- 6D cooling: tbd
- final 4D cooling: 50 T solenoid channel
- LE μ acceleration: same as NF
- HE μ acceleration: fast-cycling synchrotrons
- collider ring: large-acceptance HEMC lattice
CURRENT 1.5 TeV MC SCENARIOS

<table>
<thead>
<tr>
<th></th>
<th>LEMC</th>
<th>HEMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg Luminosity (10^{34}/cm2/s)</td>
<td>2.7</td>
<td>1</td>
</tr>
<tr>
<td>Avg bending field (T)</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Proton driver rep rate (Hz)</td>
<td>65</td>
<td>15</td>
</tr>
<tr>
<td>β^* (cm)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Muons per bunch (10^{11})</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Muon bunch train in collider</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Norm. Transv. Emittance (μm)</td>
<td>2.1</td>
<td>25</td>
</tr>
<tr>
<td>Norm. Long. Emittance (m)</td>
<td>0.35</td>
<td>0.07</td>
</tr>
<tr>
<td>Energy spread (%)</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Muon survival (%)</td>
<td>31</td>
<td>7</td>
</tr>
</tbody>
</table>
PROTON DRIVER TASKS

• assume independent baseline Project X study
• our effort addresses upgrades to meet NF and MC specs
 - acceleration to \(\sim 8 \text{ GeV} \) ?
 - power upgrade to \(\sim 4 \text{ MW} \)
 - proton bunch structure rings
 - trombone & funnel optics at target
• develop conceptual designs
• evaluate potential instabilities
• do tracking studies with realistic errors
FRONT END TASKS

- front end ≡ target + decay channel + buncher + phase rotation + precooling
- assume these system are the same for NF and MC
- study & optimize the major FE subsystems
- target
 - benchmark MERIT results
 - refine MHD modeling of beam/jet/field interactions
 - refine nozzle simulations
 - study Hg jet splash issues for Hg collection pool
- decay channel
 - studying decay in higher field channel
- bunching & phase rotation
 - optimizing new shorter channels from D. Neuffer
- precooling
 - studying using gas to increase available RF gradient
COOLING TASKS

• study & optimize the major subsystems
 - 6D cooling
 • Guggenheim, HCC, Helical FOFO-snake
 - final 4D cooling
 • 50 T channel, Li lenses, PIC, low-β bucked coil
• design other needed auxiliary subsystems
 - charge separation & recombination
 - bunch merging
• do end-to-end tracking simulations
• try to understand breakdown in normal conducting RF cavities in B fields
 - design suitable methods for mitigation
MUON ACCELERATOR TASKS

• need complete design for low energy acceleration (120 MeV to 25 GeV)
 - study suitability of NF accelerator design for MC
• need complete designs for high energy acceleration (25 to 750 GeV)
 - recirculating linear accelerator (RLA)
 - fast-ramping synchrotron
 - other alternatives? (FFAGs, reinject in PD linac)
• do single particle tracking simulations thru entire chain
• study collective effects
COLLIDER RING TASKS

- need basic lattice designs
 - IR design with appropriate constraints on quad gradients & radii
 - chromatic correction schemes
 - arc cells
- need complete design of matching regions
- design chromaticity & nonlinear detuning correction circuits
- design RF and diagnostic systems
- simulate dynamic aperture
- detailed studies of coherent effects
Machine-Detector Interface Tasks

- simulate secondary particle fluxes
 - detector backgrounds
 - radiation environment in machine
- study techniques to mitigate backgrounds
 - shielding in machine near detector
- iterate IR designs with Physics & Detector Groups
MILESTONES & DELIVERABLES

<table>
<thead>
<tr>
<th>Date</th>
<th>Milestone</th>
<th>Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY10</td>
<td>specify target interim design configuration</td>
<td>MAP Rev, Des Report</td>
</tr>
<tr>
<td></td>
<td>finish D&S for Interim IDS-NF RDR report</td>
<td>Formal Report</td>
</tr>
<tr>
<td>FY11</td>
<td>specify front end interim design configuration</td>
<td>MAP Rev, Des Report</td>
</tr>
<tr>
<td>FY12</td>
<td>specify collider ring interim design configuration</td>
<td>Ext Rev, Des Report</td>
</tr>
<tr>
<td></td>
<td>specify cooling interim design configuration</td>
<td>MAP Rev, Des Report</td>
</tr>
<tr>
<td>FY13</td>
<td>specify proton driver interim design configuration</td>
<td>Ext Rev, Des Report</td>
</tr>
<tr>
<td></td>
<td>specify NF acceleration interim design configuration</td>
<td>MAP Rev, Des Report</td>
</tr>
<tr>
<td></td>
<td>specify MC acceleration interim design configuration</td>
<td>MAP Rev, Des Report</td>
</tr>
<tr>
<td>FY14</td>
<td>finish D&S for Interim MC DFS report</td>
<td>Formal Report</td>
</tr>
<tr>
<td></td>
<td>finish D&S for Final IDS-NF RDR report</td>
<td>Formal Report</td>
</tr>
<tr>
<td>FY15</td>
<td>provide specifications & parts count for MC costing</td>
<td>Design Report</td>
</tr>
<tr>
<td>FY16</td>
<td>provide description of remaining MC R&D items</td>
<td>Design Report</td>
</tr>
<tr>
<td></td>
<td>finish D&S for Final MC DFS report</td>
<td>Formal Report</td>
</tr>
</tbody>
</table>
LEVEL 2 FTE PLAN

<table>
<thead>
<tr>
<th></th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton Driver</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front End</td>
<td></td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling</td>
<td></td>
<td></td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceleration</td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collider Ring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9.9</td>
<td>11.3</td>
<td>14.3</td>
<td>16.3</td>
<td>16.3</td>
<td>16.5</td>
<td>12.2</td>
<td>97</td>
</tr>
</tbody>
</table>
1. Proton Driver
 minimal resources available

2. Front End
 significant effort from MERIT group and IDS-NF

3. Cooling
 significant effort, but many topics under consideration
 → effort is spread thin

4. Muon acceleration
 minimal resources available

5. Collider Ring
 good progress in past year
 minimal resources available

6. Machine-Detector Interface
 good progress in past year
 minimal resources available
SUMMARY OF PLAN

Successful completion of this plan will allow:

• completion of a more-detailed reference design for a 25 GeV neutrino factory in FY14
• completion of a feasibility study for 1.5 TeV muon collider in FY16
• a best estimate of the facilities performance
• a rough cost estimate of both facilities
• a description of additional required R&D
• documentation of the results in a series of formal reports