

Neutrino Factory and Muon Collider Collaboration Meeting

NFMCC/MCTF Status and Update

January, 2009

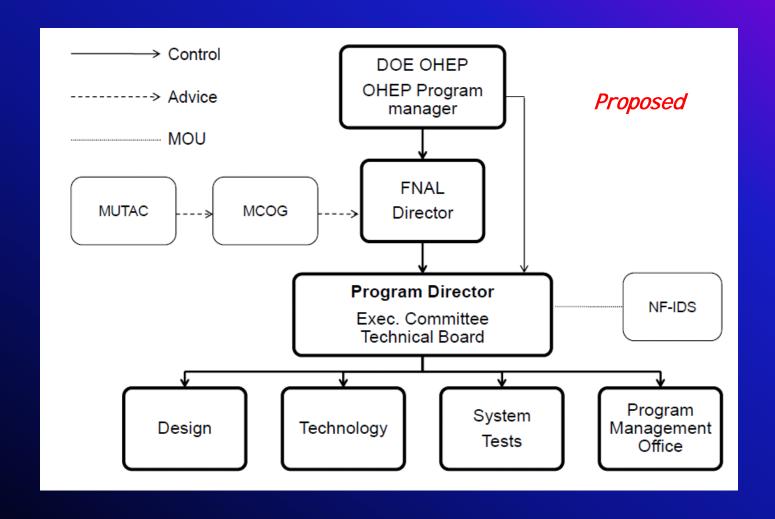
University of Mississippi

Alan Bross

Welcome

Collaboration Meeting XIV Maybe the Last for "This" Collaboration

- It has been a tough year
- Hopes for this past year as stated last year:
 - First beam experiment in the MTA
 - s Not Yet. The MTA reconfiguration is complete, but no beam yet
 - MICE makes first cooling measurement
 - Not Yet. MICE has taken a lot of beam data, but spectrometers not quite there
 - Neutrino Factory International Design Study
 - s Is moving along, progress made
 - Muon Collider Design Effort
 - Moving along Good Progress
 - Action on 5 Year Plan?
 - s Not quite yet


What About That 5(ish) Year Plan?

 The Office of High Energy Physics believes that it is timely to mount a concerted national R&D program that addresses the technical challenges and feasibility issues relevant to the capabilities needed for future Neutrino Factory and multi-TeV Muon Collider facilities

But, the DOE giveth and taketh Muon Acceleration Program Org Chart

But Remember Why We are Here

Neutrino Factory

Only Facility that has access to All Oscillation Channels

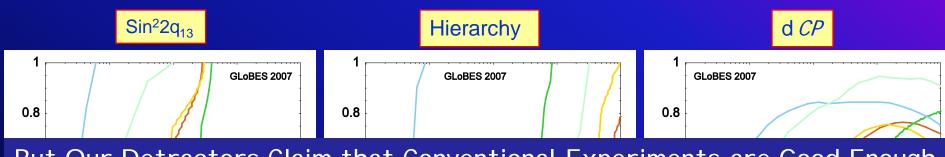
$\mu^+ \to e^+ \nu_e \overline{\nu}_\mu$	$\mu^- \to e^- \overline{\nu}_e \nu_\mu$			
$\overline{ u}_{\mu} ightarrow ar{ u}_{\mu}$	$ u_{\mu} ightarrow u_{\mu}$	disappearance		
$\overline{ u}_{\mu} ightarrow ar{ u}_{e}$	$ u_{\mu} ightarrow u_{e}$	appearance (challenging)		
$\overline{ u}_{\mu} ightarrow ar{ u}_{ au}$	$ u_{\mu} \rightarrow \nu_{ au}$	appearance (atm. oscillation)		
$ u_e ightarrow u_e$	$\bar{\nu}_e ightarrow \bar{\nu}_e$	disappearance		
$ u_e ightarrow u_\mu$	$\bar{\nu}_e ightarrow \bar{ u}_\mu$	appearance: "golden" channel		
$ u_e ightarrow u_{ au}$	$\bar{\nu}_e ightarrow \bar{ u}_ au$	appearance: "silver" channel		

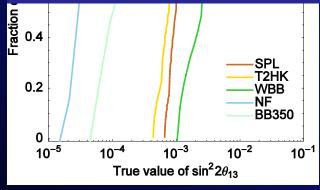
Ø 'Reference' Neutrino Factory:

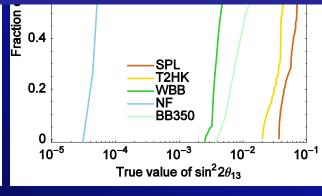
- ø ³ 10²¹ useful decays/yr; exposure '5 plus 5'
 years
- Two baselines (>7500 km & >4000 km)
 - 50 kT magnetised iron detector (MIND) with MINOS performance Golden Channel Detector
 - Backgrounds (for golden channel):
 - ø Sign of mmis-ID'd
 - ø Charm decays
 - σ $E_{res} \sim 0.15 * E_{v}$

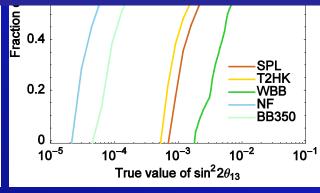
"Golden" ® Sign of mobserved in detector opposite to that stored in decay ring

mt® n_e Þ n_mր® mp




And Still - No Facility can Do Better

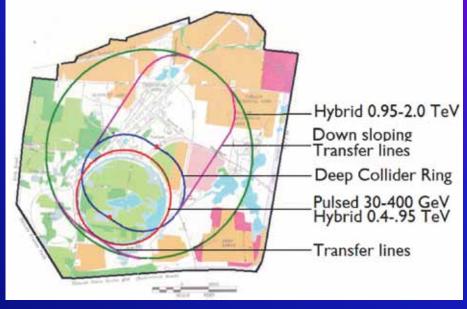



ISS Physics Group Report: Rept. Prog. Phys. 72:106201,2009

But Our Detractors Claim that Conventional Experiments are Good Enough

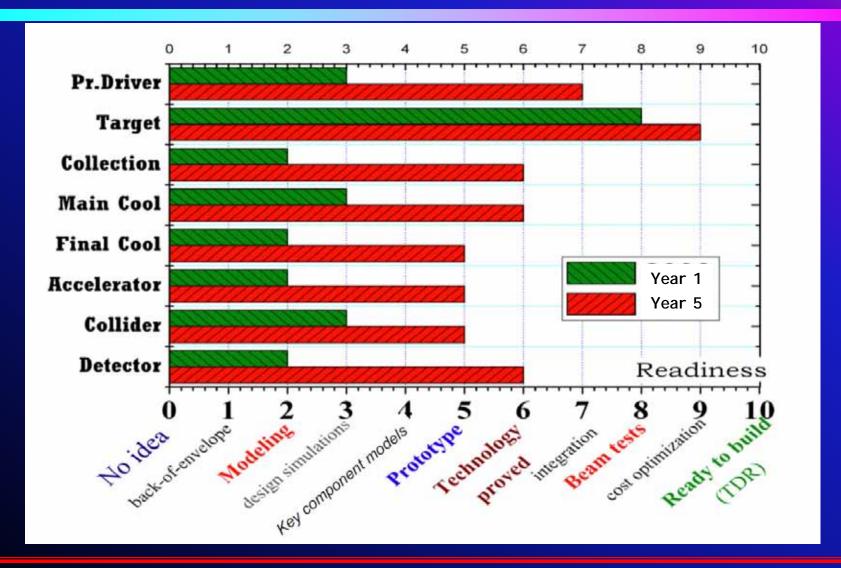
SPL: 4MW, $1MT H_2OC$, 130 km BLT2HK: 4 MW, $1MT H_2OC$, 295 km BLWBB: 2MW, $1MT H_2OC$, 1300 km BL

NF: 4MW, 100KT MI ND, 4000 & 7500 BL


BB350: g=350, 1MT H₂OC, 730 km BL

The Energy Frontier via mm Collisions

3 TeV Machine based on Recirculating Linear Accelerators & LC SC RF 4 TeV Machine based on Rapid Cycling Synchrotron



Complexity of Colliders

	LHC	MC	CLIC					
state of the art magnets	Ö	Ö	-					
state of the art	_	Ö	Ö					
R But not All Parts are the Same &								
Our Detractors Claim that the Muon Collider is Still 50 Years Away								
beam dynamics								
Total # of	~4000	~4000	~200,000					
elements								
Luminosity	>1e34	>1e34	>1e34					

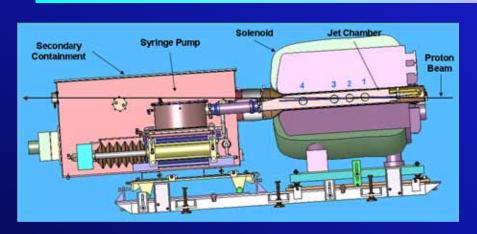
Muon Collider Technical Foundation after 5 Years From Here to There

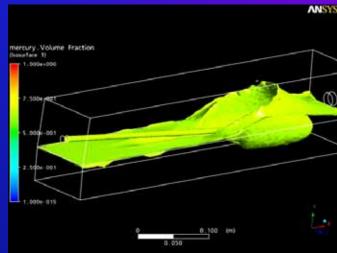
Current Guidance From DOE

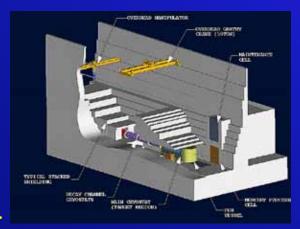
- The Office of HEP at the DOE supports the concept of the 5-7 year plan
- Requests Fermilab to form a National Muon Program
 - With Strong Desire to bring in International Participation
 - **u** & With Strong University Participation
- However, sees an increase of scope over the current program at a X2 (at least initially). Increase could start as early as FY11.

The Evolving 5+ Year Plan

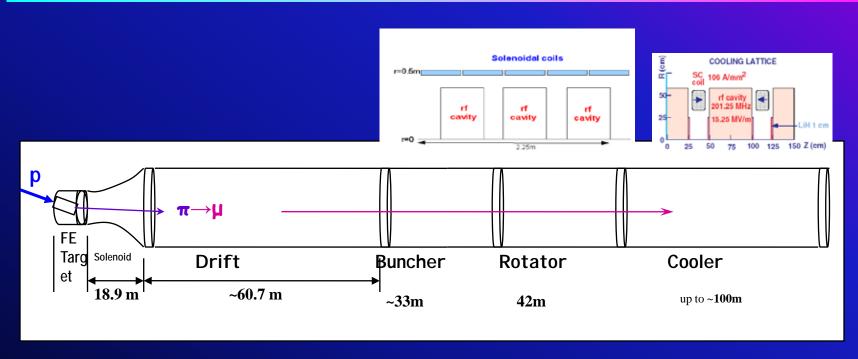
- A joint US: NFMCC-MCTF Plan
 - A measured program based on the solid muon accelerator R&D achievements of the last decade
 - Sufficiently ambitious to make substantial progress before the next round of long-term decisions by the particle physics community
 - Includes accelerator, physics & detector studies (only accelerator part in this talk we also have plans & estimates for physics & detector studies)
- Meets our existing commitments (IDS-NF RDR, MICE) and in addition will deliver:
 - MC performance requirements based on physics
 - u A first end-to-end MC simulation
 - Critical component development & proof-of-principle experiments
 - A first MC cost estimate




Highlights Reel



Targety



- MERIT is complete
 - **u** But much to do on the Target Station Design
- Splash mitigation in the mercury beam dump.
 - Possible drain of mercury out upstream end of
- magnets.
- Downstream beam window.
- Water-cooled tungsten-carbide shield of
- superconducting magnets.
- HTS fabrication of the superconducting magnets.
- Improved nozzle for delivery of Hg jet

Front End Optimization

- Continuing front end IDS design study
- ~Biweekly phone Conference
- Meeting at RAL
 - u December 14-18
- April at Fermilab (IDS meeting)

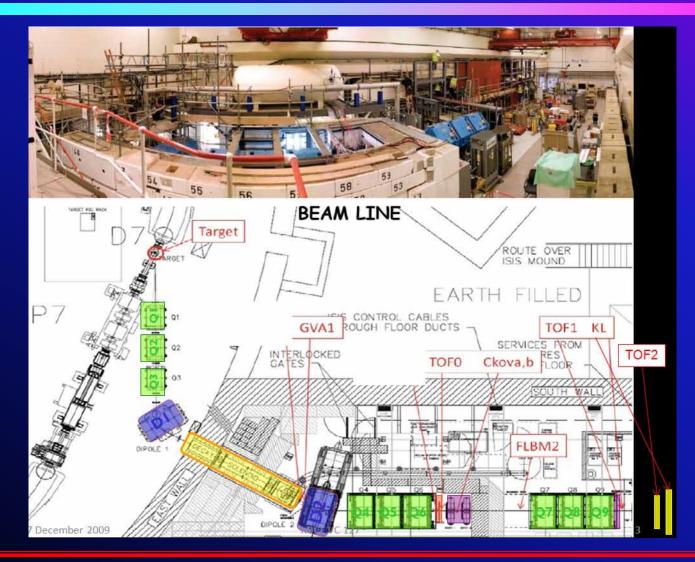
RF Test Program

- Study the limits on Accelerating Gradient in NCRF cavities in magnetic field
- Fundamental Importance to both NF and MC
 - Muon capture, bunching, phase rotation
 - u Muon Cooling
 - **u** Acceleration
- The MTA Reconfiguration is Complete Ready for Beam (well maybe)
- You will hear about our 3-Pronged Attack
 - MTA status, Reduce (eliminate) field emission in Vacuum RF, HP gas-filled cavities, Magnetic Insulation for vacuum RF, breakdown theory

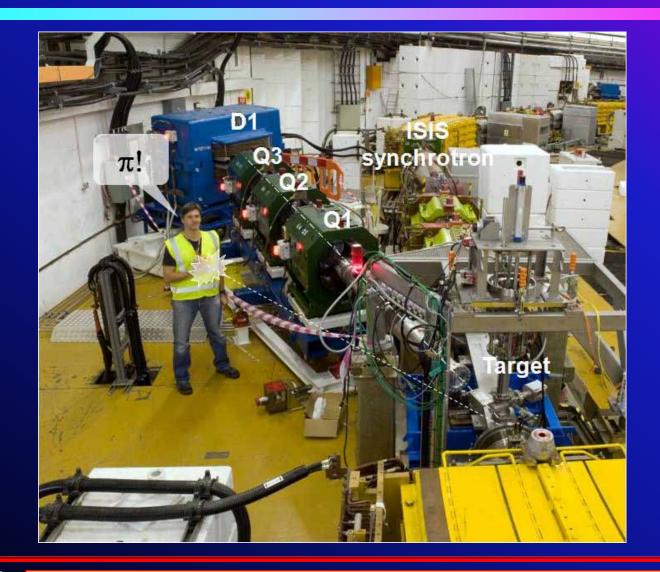
The single most critical Technical challenge for the NF & MC

MTA Reconfiguration complete

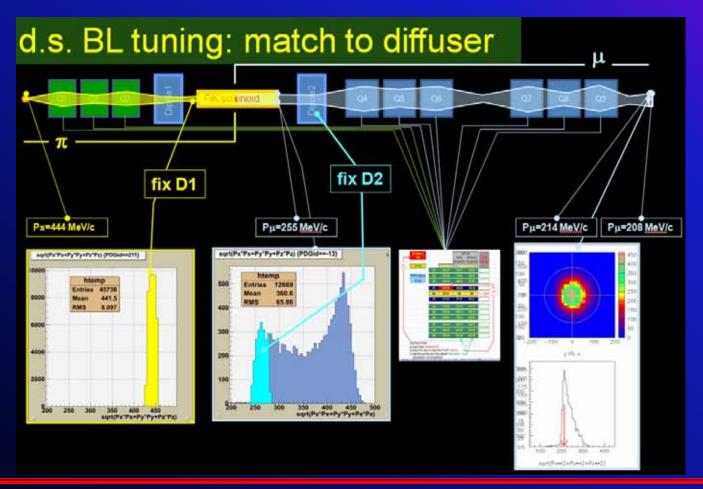
MTA II



Muon Ionization Cooling Experiment (MICE)

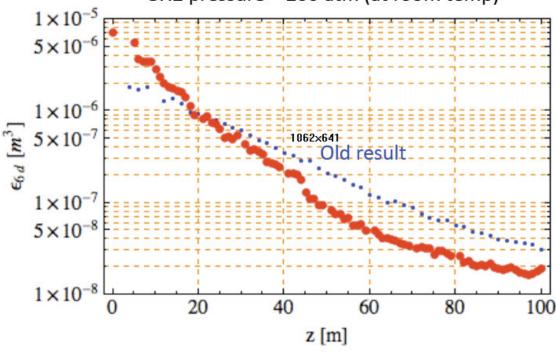

MICE Beam Line Commissioned and Running

MICE Target Tests



MICE Beam Line Tuning

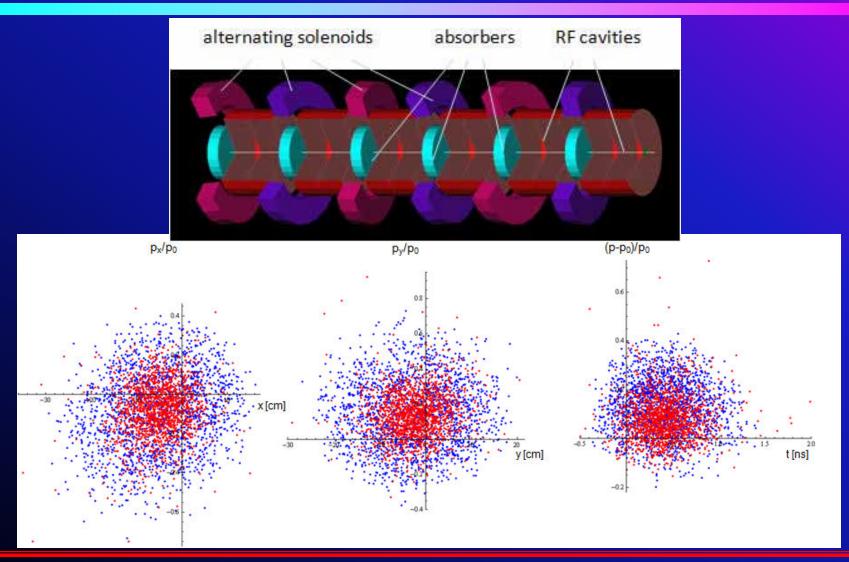
Now that Decay Solenoid is working well, can tune for Optimal myield



Design Studies - HCC

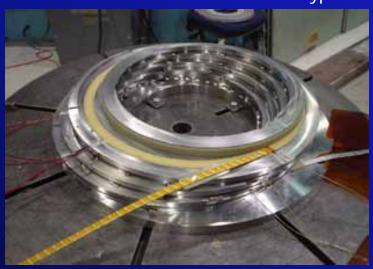
Six-Dimensional emittance evolution in new HCC

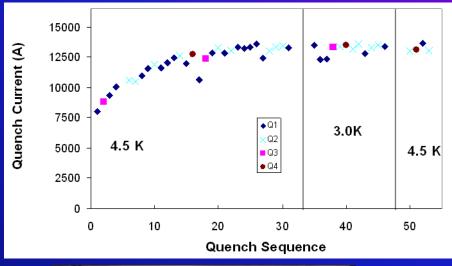
 $v = 400 \text{ MHz}, \kappa = 1.0, \lambda = 1.0 \text{ m}$ GH2 pressure = 200 atm (at room temp)



Cooling factor > 500 $\sim 2^9$ @ z = 100 m

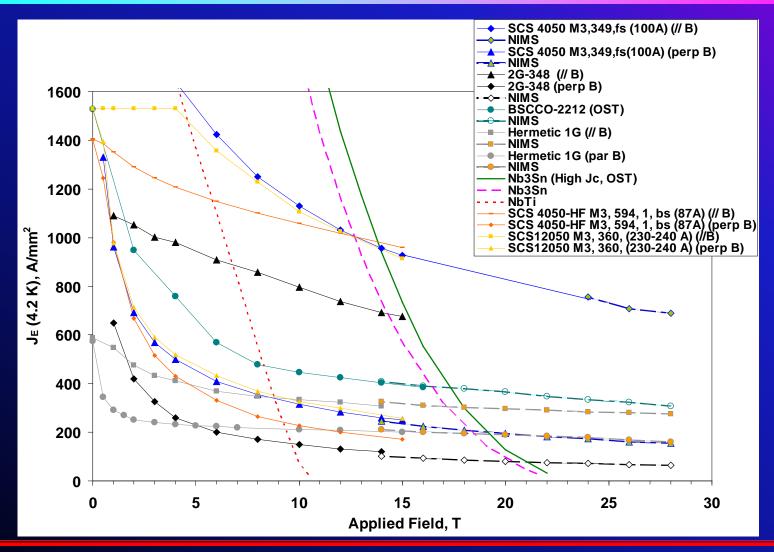
Design Studies - HFOFO Snake





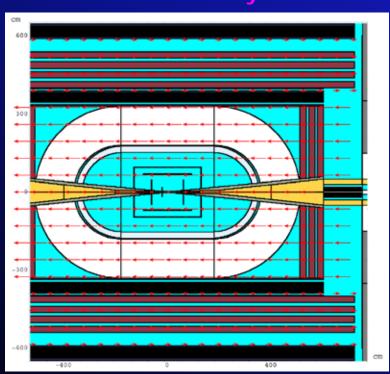
Helical Cooling Magnets

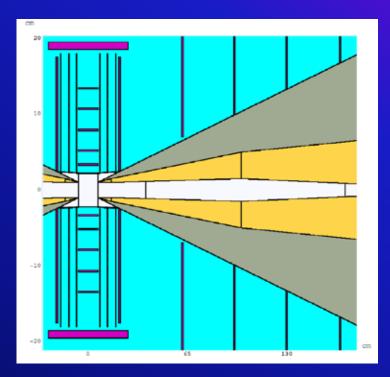
4-Coil Prototype reached 85% of short sample limit



HTS Conductor Studies

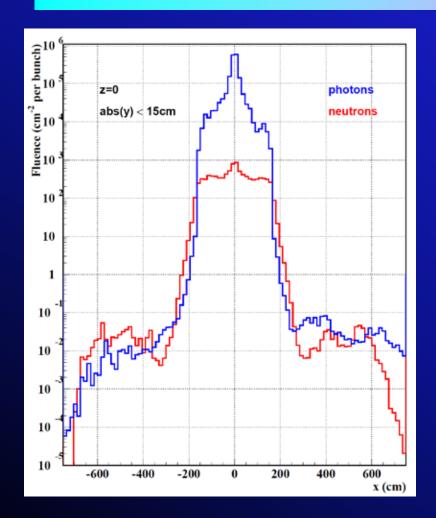
HTS Cable Studies

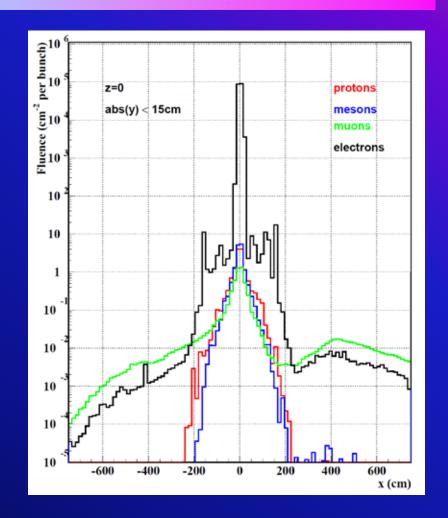

Company	Conductor Type	Coil Geometry	Impregnation	Details of Test	SSL(14T)	Notes
American Superconductor	348 YBCO	Single Pancake	Stycast 2850FT	77K, 4.2K 0T-14T	98%	[Di:38mm-Do:43mm]
American Superconductor	Hermetic BSCCO2223	Single Pancake	Stycast 2850FT	77K, 4.2K 0T-14T	98%	[Di:38mm-Do:43mm]
American Superconductor	Hermetic BSCCO2223	Double Pancake	Stycast 2850FT	77K, 0T	67%	[Di:32mm-Do:43mm] Bad Splice due to small outer radius and stiffness of tape
SuperPower	YBCO M3-609 (R&D conductor)	Single Pancake	Stycast 2850FT	77K, 4.2K 0T-14T	0%	[Di:38mm-Do:43mm] Resistive Coil
SuperPower	YBCO M3-569	Single Pancake	Stycast 2850FT	77K, 4.2K 0T-14T	29%	[Di:38mm-Do:43mm] Low Ic, Low n values
SuperPower	YBCO M3-569	Double Pancake	Stycast 2850FT	77K, 4.2K 0T-14T	22%	[Di:32mm-Do:43mm] Low Ic, Low n values
SuperPower	YBCO M3-569	Single Pancake	Dry	77K, 4.2K	76%	[Di:38mm-Do:43mm] Tested in compression
SuperPower	YBCO M3-569	Double Pancake	Dry	77K, 4.2K 0T-10T	40%	[Di:60mm-Do:62mm]
SuperPower	YBCO M3-569	Double Pancake	Dry	77K, 4.2K 0T-12T	87%	[Di:60mm-Do:62mm]



Muon Collider - MDI Studies

- After a long Hiatus, work on studying machine-detector interface issues and backgrounds has begun again
 - Fermilab Physics Detector WS in November




4th Detector Concept with new forward cone

Detector Backgrounds

MORE WORK TO BE DONE

Conclusions/Outlook

- We have managed to make progress this year in a number of areas, but have also experienced unfortunate delays in others
- This is the first time in many years, however, where the prospects for increased funding in Muon Accelerator R&D look promising
 - **DOE** supports this expanded effort (at least verbally at this point) and is likely to act quickly one the revised proposal is submitted
 - u Goal to submit by the end of the month
- Can expect a formal review by spring

Conclusions/Outlook

- The transition from the NFMCC/MCTF to the national MAP, will present us with challenges, but we are entering an exciting new phase of our work
- This represents the first real opportunity for a significant increase in effort/funding
- We have also received a good deal of exposure in the scientific press as of late with some rather interesting statements

"It would be nice to head in a direction that has some real innovation," W. Brinkman