Optimized Parameters For A Mercury Jet Target

X. Ding, D. B. Cline UCLA H. Kirk, J. S. Berg BNL

NFMCC Collaboration Meeting LBNL January 25-28, 2009

Outline

- 1. Optimization method
- 2. Target radius, beam angle and jet/beam crossing angle vs. proton kinetic energy
- 3. Normalized meson production

The Neutrino Target Concept

The Target/Collection System

Count all the pions and muons that cross the transverse plane at z=50m.

For this analysis we select all pions and muons with 40 < KE< 180 MeV.

Hg Jet Target Geometry

Previous results: Radius 5mm, θ_{beam} =67mrad $\Theta_{crossing}$ = 33mrad

Optimization Method

- 1) Vary the target radius with previous results of θ_{beam} =67mrad and θ_{cross} =33mrad. Add all positive and negative mesons from the target/collection system. Plot them and make polynomial fit to find the new radius corresponding to the peak of mesons;
- 2) Vary the beam angle with above new target radius so as to find the new angle at the peak;
- **3)** Vary the beam/jet crossing angle with above both new target radius and beam angle to find the new crossing angle at the peak;
- 4) Repeat the above procedure until convergence.

Initial Target Parameters

Beam Energy	Beam Angle	Beam/Jet
GeV	mrad	Crossing Angle
		mrad
2, 4, 6, 8, 10, 12, 14, 50, 100	67	33

Step 1: Vary the Target Radius

Step 2: Vary the Beam Angle

Step 3: Vary the Beam/Jet Crossing Angle

10

Beam Energy	Run No.	Vary Target Radius	Vary Beam Angle	Vary Beam/Jet Crossing Angle
	zero		67	33
	1st	0.65/ 111063	138/ 125871	26.5/ 126145
50	2nd	0.59/ 127089	129/ 127709	25/124165
	3rd	0.57/ 128246	127/ 127700	23/127168
	4th	0.55/ 128382	124/127760	23.36/ 126560

Target Radius vs Beam Energy

Beam Angle vs Beam Energy

Crossing Angle vs Beam Energy

Note:

The initial beam angle and crossing angle at 5, 7 and 9 GeV are 77 mrad and 22mrad, respectively. At 3 GeV, they are 77mrad and 15.3 mrad.

50GeV Beam-Mesons at 50m

16

Normalized Meson Production

(Normalized to beam power)

17

Normalized Distribution

(Normalized to 10 GeV)

Normalized Mesons at 50m (Positives+Negatives)

Summary

- The target parameters including target radius, beam angle and beam/jet crossing angle are optimized with MARS code.
- The mesons production at z=50m is relatively efficient around 5~15 GeV of proton kinetic energy.