

Compressor Ring

Valeri Lebedev

Fermilab

<u>Contents</u>

- Where do we go?
- Beam physics limitations
- Possible Compressor ring choices
- Conclusions

NFMCC collaboration meeting LBNL, Berkeley, CA Jan. 25-28, 2009

Where do we go?

- Tevatron Run II ends in 1.5 years
- FNAL future
 - Energy frontier -> Intensity frontier
- Project X ->
 - Neutrino factory ->
 - Muon collider
- Before we build machine
 - We have to anticipate coherent upgrade path
 - Energy choice
 - Initial infrastructure choice
 - \Rightarrow Future developments
- The most general structure for Muon collider proton source
 - Linac ->

Synchrotron (?) ->

Accumulator ring (?) ->

Compressor ring

Present Project X parameters

Initial Configuration Document

Linac energy	8 GeV
Max. linac current (no chopping)	30 mA
Average linac current (53 MHz chopping)	21 mA
Pulse duration	1.2 ms
Repetition rate	5 Hz
Power	1 MW

*Single pulse injection to MI, 1 of 7 pulses for 120 GeV program

<u>Alternative Configuration Document*(preliminary)</u>

	Stage 1	Stage 2
Linac energy	2 GeV	
Synchrotron energy, GeV	8	21
Average linac current (53 MHz chopping)	21 r	nA
Pulse duration	0.35	ms
Repetition rate, Hz	5	15
Power, MW	0.39	2.2

*Cost saving, lower linac current, 4 of 7 pulses for 120 GeV program

Compressor ring, Valeri Lebedev, NFMCC collaboration meeting, LBNL, Jan. 25 – 28, 2009

Boundary conditions

Linac

- Beam current \leq 40 mA
- Pulse length $\leq 1 \text{ ms}$
- Repetition rate = 15 Hz
- RMS bunch length after compressed < 60 cm</p>
- Beam is focused on the mercury target of 5 mm radius
- Rms beam size = 2 mm
- Beta-function on the target \geq target length (~20 cm)
- Maximize beam power on the target

More or about 1 MW is desirable

Main beam physics limitations

- Consistency of beam parameters through entire chain of the planned proton accelerators
- Beam focusing on the target
- Longitudinal beam stability
- Transverse beam stability
- Particle loss due to non-linear forces of the beam space charge

Compressor ring, Valeri Lebedev, NFMCC collaboration meeting, LBNL, Jan. 25 - 28, 2009

Choices to be considered

Present Project-X with injection to Recycler + Compressor ring

Compressor ring, Valeri Lebedev, NFMCC collaboration meeting, LBNL, Jan. 25 – 28, 2009

Rms beam sizes (ε =10 *mm mrad* $\rightarrow \varepsilon_{n95\%}$ = 570 *mm mrad)*

Compressor ring, Valeri Lebedev, NFMCC collaboration meeting, LBNL, Jan. 25 - 28, 2009

Focusing on the target (continue)

Other issues

- Compensation of focusing chromaticity by sextupoles is limited because of very large beam emittance
- Beam power deposition on the vacuum window
 - Further decrease => larger
 S_{target-to-window} => larger β_{max} => larger FF chromaticity

Beam envelopes in the target vicinity for $\Delta p/p = -3, -2, \dots 3\%$

- Using SC quads could reduce FF chromaticity but its usefulness is limited by desire to have large beam size on the vacuum window
- 1 MW window looks challenging but solvable problem
 - Particle flux: dN/dt= 7.8·10¹⁴ p/s; dN/(dtdS)=7.3·10¹³ p/cm²/s
 - Beryllium, d=1 mm, R=5.2 cm (4σ), dP/dS_{max} ~3.5 W/cm²
 ΔT = 40 K° for edge cooled window
 - Radiation hardness needs to be investigated

Main beam physics limitations (2)

Longitudinal beam stability

For continuous beam the dispersion equation is

$$\varepsilon_{n}(\delta\omega) = 1 + \frac{eI_{0}Z_{n}}{2\pi iR_{0}p} \int_{\delta \to +0} \frac{df / dx}{\delta\omega + n\omega_{0}\eta x - i\delta} dx = 0 ,$$

$$x = \frac{\Delta p}{p} , \quad \eta = \alpha - \frac{1}{\gamma^{2}} , \quad \delta\omega = \omega - n\omega_{0}$$

Stability condition depends on particle distribution, f(x)

$$\frac{Z_n}{n} = 2\pi\beta\eta\sigma_p^{-2}\left(\frac{pc}{eI_0}\right)A(y)$$

where $y = \frac{\delta\omega}{\omega_0\eta n}$, $A(y) = \left(i\sigma_p^{-2}\int_{\delta\to+0}\frac{df/dx}{y+x-i\delta}dx\right)^{-1}$

There is no significant difference in stability thresholds for the cases above and below critical energy for particle distribution close to the rectangular one

Longitudinal beam stability (continue)

- Longitudinal impedance has three major contributions
 - Space charge
 - For round beam & vacuum chamber

$$\frac{Z(\omega_n)}{n} = i \frac{Z_0}{\beta \gamma^2} \ln\left(\frac{a}{1.06\sigma}\right)$$

- Resistive wall
 - For round beam & vacuum chamber

$$\frac{Z(\omega_n)}{n} = \left(1 - i\operatorname{sign}(\omega_n)\right) \frac{Z_0\beta c}{2a\sqrt{2\pi\sigma\omega_n}}$$

- Effect of RF cavities, vacuum chamber discontinues, etc. can be controlled by machine design and dampers (f < 100 MHz)
- Space charge contribution does not depend on frequency and dominates at high frequency
 - It results very fast growth of momentum spread, $\lambda_n \approx n\omega_0 \eta (\Delta p / p)$
- For high frequencies $\lambda_n >> \omega_s$, and the continuous beam theory can be used

Zn/n [Hz]

f [Hz]

Copper chamber, f_0 = 1.13 MHz, a = 4.8 cm, F=8 GeV

Main beam physics limitations (3)

Transverse beam stability

Worst case estimate can be obtained for the case of the bunch with zero revolution frequency spread

 $\delta v_{cb} = -i \frac{r_p N}{2\pi\beta\gamma v} \frac{Z_{\perp}}{Z_0} - \text{continuous beam}$ $\delta v \approx \delta v_{cb} \left(\frac{C}{L_b}\right)^{1/4} - \text{constant bunch density}$

At small frequencies impedance is dominated by wall resistivity $Z_{\perp} \approx Z_0 \frac{c(sign(\omega) - i)}{2\pi a^3 \sqrt{2\pi\sigma\omega}}$ - round chamber;

 $Z_y \approx \frac{\pi^2}{12} Z_\perp$, $Z_x \approx \frac{\pi^2}{24} Z_\perp$ - flat chamber

Flat copper chamber, f₀ = 1.13 MHz, a = 4.8 cm, v=5.73, C/L._b=0.235 E=8 GeV, N=5.2·10¹³

For short machine, high wall conductivity and large chamber size the transverse instabilities should not be a problem

Main beam physics limitations (4)

- Compressed beam has very large particle density. That results large longitudinal and transverse fields
- Both longitudinal and transverse fields drop fast with beam energy <u>Incoherent tune shift due to beam space charge</u>
- Betatron tune shift is equal to

$$\delta v_{x,y} = \frac{r_p N_p}{2\pi\beta^2 \gamma^3} \frac{C}{L_b} \left\langle \frac{\beta_x}{(\sigma_x + \sigma_y)\sigma_{x,y}} \right\rangle_s, \quad \sigma_x = \sqrt{\varepsilon_x \beta_x + D^2 \left(\frac{\Delta p}{p}\right)^2}, \quad \sigma_y = \sqrt{\varepsilon_y \beta_y}$$

Dispersive contribution to the tune shift can significantly reduce δv Longitudinal field of the bunch

For Gaussian bunch

$$V_{SC}(s) = \frac{2eNC\ln(a/(1.06\sigma_{\perp}))}{\sqrt{2\pi\gamma^2\sigma_s^2}}s\exp\left(-\frac{s^2}{2\sigma_s^2}\right)$$

<u>Choice 1 – CR with Recycler beam</u>

- Low longitudinal phase density of the Recycler beam is the main limitation of the beam power
 - Recycler Project-X bunch: N = $2.9 \cdot 10^{11}$, $\varepsilon_s = 0.4 \text{ eV} \cdot \text{s/bunch}$ (53 MHz RF)
- Only 8 bunches can be coalesced to fit to the required ε_L:
 σ_s = 60 cm, σ_p = 0.1%, ε_{s95} = 6π σ_s σ_p p / (βc) ~3.3 eV·s
 => 47 kW beam power on target (15 Hz, 1 bunch)
- What's wrong with Recycler?
 - ♦ Large circumference
 - Small acceptance
 - Stainless steel vacuum chamber
- Can multiple bunches be merged in transverse phase space
 - Recycler beam emittance: $\varepsilon_{n95} = 25 \text{ mm mrad}$
 - ♦ FF limit = 570 mm·mrad
 - On paper merging ~100 bunches is allowed $(570/(2*25))^2$
- But realistically only 4 bunches can be merged because the small phase space distance between bunches is required
 Compressor ring, Valeri Lebedev, NFMCC collaboration meeting, LBNL, Jan. 25 28, 2009

<u> Choice 2 – CR with direct strip injection from Linac</u>

- Optics design criteria
 - Small circumference (Space charge, tr. & long instabilities)
 - Large acceptance
 - Large ∆p/p => high periodicity
 - Zero dispersion in RF cavities
 - Large slip factor to avoid microwave instability
 - It requires larger RF voltage and horizontal aperture in arcs Mon Dec 08 09:41:55 2008 Optim - MAIN: - C:\VAL\Optics\MuonCollider\Comp

Choice 2 (continue)

Main parameters of 8 GeV Compressor ring

Circumference	264 m
Tunes, v_x / v_y	6.42/5.42
Transition energy	3.9 GeV
Dipole field	20 kG
Acceptance	100 mm mrad
Momentum acceptance	±3%

Mon Dec 08 10:05:51 2008 OptiM - MAIN: - C:\VAL\Optics\MuonCollider\Comp

Compressor ring, Valeri Lebedev, NFMCC collaboration meeting, LBNL, Jan. 25 - 28, 2009

<u>Choice 2 (continue)</u>

Beam injection & compression

Micro wave instability is the major limitation of the beam power

Injection parameters

Injection type	H ⁻ strip
Linac current, unchopped/chopped, mA	40/9.5
Linac rms momentum spread	<2·10 ⁻⁴
Linac energy sweep	±6·10 ⁻⁴
Filling factor, L _b /C	0.235
Total injection time	0.9 ms
DC beam current	9.4 A
Number of particles	5.2·10 ¹³
Harmonic number, h	1
RF voltage	1.5 kV
Synchrotron tune	2.7·10 ⁻⁵
$(Z_n/n)_{\text{Space charge}} = (Z_n/n)_{\text{Stability}}$	10 Ω
Beam power	1 MW

Longitudinal phase space at the end of injection and after compression

Compressor ring, Valeri Lebedev, NFMCC collaboration meeting, LBNL, Jan. 25 - 28, 2009

<u>Choice 2 (continue)</u>

Beam injection & compression (continue)

Parameters of compressed bunch

Harmonic number, h	1
RF voltage	1 MV/turn
Max. bunch long. field	~350 kV/turn
Synchrotron tune	6.8·10 ⁻⁴
Rotation time	370 turns
RF bucket height, ∆p/p	0.053
Coulomb tune shifts, $\Delta v_x / \Delta v_y$	0.07/0.105
\perp instability growth rate	2·10 ⁻⁵ /turn

There is not much leverage left to exceed 1MW beam power for 8 GeV proton driver (15 Hz, single bunch)

Projections of longitudinal particle distribution to s and p planes after compression

<u>Choice 3 – CR with injection from 21 GeV RCS</u>

- Optics design criteria
 - Small circumference (Space charge, tr. & long instabilities)
 - Two turn injection => Large hor. acceptance
 - Large ∆p/p => high periodicity
 - Zero dispersion in RF cavities

Sat Jan 24 18:41:18 2009 OptiM - MAIN: - C:\VAL\Optics\MuonCollider\CompressorRing\Compres

Choice 3 (continue)

Circumference	415 m
Tunes, v_x / v_y	10.79/8.79
Transition energy	7.45 GeV
Dipole field (superferic)	27 kG
Acceptance, $\varepsilon_x/\varepsilon_y$, mm mrad	500/50
Momentum acceptance	±3%

Sat Jan 24 18:51:50 2009 OptiM - MAIN: - C:\VAL\Optics\MuonCollider\CompressorRing\Compres

<u>Choice 3 (continue)</u>

Beam parameters

2.18
4 ·10 ¹³
0.5
36
1.1·10 ¹²
10
7·10 ⁻⁵
1
1 MV
2.8·10 ⁻⁴
1.5 Ω
2 MW

Beam injection & compression

- 2 turn injection from RCS doubles longitudinal density
- Adiabatic bunching with consecutive bunch rotation, h=1
- Micro wave instability is still the major limitation of the beam power

Schematic of 2 turn injection presented in longitudinal phase space

<u>Choice 3 – CR with injection from 21 GeV RCS</u>

- 21 GeV compressor ring should allow to exceed 1 MW limit of 8 GeV choice
- The help comes from
 - Smaller number of particles per bunch (8/21)
 - Reduced effect of space charge fields as $1/\gamma^2$
- However to exceed 0.3 MW power one needs to have the longitudinal phase space density higher than is presently planned for Project-X
 - Fast accelerating rate in RCS limits a single bunch emittance to ~0.1 eV s (three fold emittance increase due to imperfections of RF gymnastic is assumed)
- 21 GeV choice also implies that the beam leaves longer time in the rings and high frequency RF is used for acceleration
 - High frequency RF and high beam intensity can provoke electron multipactoring in the vacuum chamber and, consequently, ep-instability.
 - This problem has to be addressed if RCS is preferred for Project X

<u>Conclusions</u>

- 8 GeV linac is a good asset for muon collider proton driver
 - It is feasible to achieve 1 MW with a single bunch mode at 15 Hz repetition rate in the specialized compressor ring
 - It looks like that other Project X infrastructure hardly can be useful for muon collider
- Further beam power increase requires larger energy
 - 21 GeV RCS looks as a good alternative
 - If chosen the problems of increased longitudinal phase space density (factor of 4) and ep-instability have to be addressed

Backup slides

Two turn injection

Assume that after injection two injected bunches have the same amplitude but betatron phases shifted by 180 deg.

$$\begin{bmatrix} x_1 \\ p_1 \end{bmatrix} = \begin{bmatrix} \cos \phi \\ -\sin \phi_1 \end{bmatrix}, \quad \begin{bmatrix} x_2 \\ p_2 \end{bmatrix} = \begin{bmatrix} -\cos \phi \\ \sin \phi_1 \end{bmatrix}$$

That bounds up the initial betatron phase of injected bunch, φ, the kick amplitude, Δp, and the tune, μ. There are two solutions

$$\phi = -\frac{1}{2} \begin{bmatrix} \mu + \pi \\ \mu - \pi \end{bmatrix}, \quad \Delta p = \frac{\sin \frac{\mu}{2} + \sin \frac{3\mu}{2}}{\sin \mu} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Corresponding betatron amplitude before the kick is

$$R = \sqrt{\cos\left(\frac{\mu - \pi}{2}\right)^2 + \left(\sin\left(\frac{\mu - \pi}{2}\right) - \frac{\sin\frac{\mu}{2} + \sin\frac{3\mu}{2}}{\sin\mu}\right)^2}$$

All distances are measured in betatron amplitude after injection

Compressor ring, Valeri Lebedev, NFMCC collaboration meeting, LBNL, Jan. 25 – 28, 2009

Rapid cycling synchrotron

<u>Strategy for Choice of RSC parameters</u>

- Beam current is set to by 2 MW power of MI: I_{beam}=2.5 A
- Maximum energy 21 GeV
 - Above MI critical energy
 - Large enough to get rid of space charge tune shift limitations
- Circumference 1/4 of MI
 - Compromise between
 - Smallest value satisfying RCS requirements for chosen max. energy
 - Number of cycles required to fill MI
 - **Optics** FODO
 - racetrack
 - zero dispersion in the straight lines
 - Large tune
 - \Rightarrow Small momentum compaction
 - \Rightarrow Small beam size -> small magnets
 - Alternative choice of ring with negative momentum compaction will have larger aperture, larger magnets, more problems with vacuum chamber heating

Compressor ring, Valeri Lebedev, NFMCC collaboration meeting, LBNL, Jan. 25 - 28, 2009

Compressor ring, Valeri Lebedev, NFMCC collaboration meeting, LBNL, Jan. 25 – 28, 2009

<u>Rapid cycling synchrotron (continue)</u>

<u>Screening of AC bending magnetic field by vacuum chamber</u>

- Eddy currents in vacuum chamber result in a delay of bending field
 - $\frac{\delta B}{B} = -4\pi^2 ia \frac{\sigma_R ad}{c^2} f_{ramp}$ they do not produce non-linearities if the II the television chamber is round and has constant w
- Heating of the vacuum chamber by eddy currents is more serious limitation technical limitation

$$\frac{dP}{ds} = 4\pi^3 \frac{\sigma_R a^3 d}{c^2} f_{ramp}^2 \frac{(B_{max} - B_{min})^2}{2}$$

The same dependence on vacuum chamber radius and thickness as the growth rate of resistive wall instability

Vacuum Chamber Heating and Screening*

f _{ramp} [Hz]	E _{max} [GeV]	B _{max} [kG]	δ Β/Β	dP/ds [W/m]
5	8	5.3	3 10 ⁻⁴	1.6
	21	13.1		9.5
15	8	5.3	10 ⁻³	14
	21	13.1		86

*Stainless steel, d = 0.7 mm, a = 22 mm

Rapid cycling synchrotron (continue)

Main machine parameters

	Stage 1	Stage 2
Injection kinetic energy, GeV	2	2
Extraction kinetic energy, GeV	8 21.	
Circumference, m	829.8	
γ transition, γ_{t}	25.04	
Ramp frequency, Hz	5 15	
Total number of particles	4.5·10 ¹³	
Beam current at injection, A	2.5	
Betatron tunes, Qx/Qy	28.42/16.41	
Normalized 95% emittance, mm mrad	35	
Norm. acceptance at injection, $\varepsilon_x/\varepsilon_y$, mm mrad	85,	/65
Harmonic number	14	17
90% longitudinal emittance, eV s /bunch	0.25	
Maximum Coulomb tune shifts, KV-distr., $\Delta Qx/\Delta Qy$	0.059/0.072	
Number of bunches	137	
Natural tune chromaticity	-34/ -25	
RF voltage	3.6 2.3	
Beam power, kW	390 2200	

Rapid cycling synchrotron dipole (V. Kashikhin)

Peak field	Т	1.3
Field at injection	Т	0.12
Magnet gap	mm	44
Good field area diameter	mm	40
Field homogeneity		0.01 %
Effective length	m	2.33
Peak current	A	1000 A
Current frequency	Hz	15
Duty factor	%	100
Number of turns/pole		24
Copper conductor	mm × mm	15 x 20.2
Conductor cooling hole diameter	mm	10
Number of pancake coils/pole		2
Number of pancake coils/pole Lamination material		2 M17
Number of pancake coils/pole Lamination material Lamination thickness	mm	2 M17 0.35
Number of pancake coils/pole Lamination material Lamination thickness Inductance	mm H	2 M17 0.35 0.024
Number of pancake coils/pole Lamination material Lamination thickness Inductance DC resistance	mm H Ohm	2 M17 0.35 0.024 0.022
Number of pancake coils/poleLamination materialLamination thicknessInductanceDC resistanceStored energy	mm H Ohm kJ	2 M17 0.35 0.024 0.022 12
Number of pancake coils/poleLamination materialLamination thicknessInductanceDC resistanceStored energyPower losses rms (without eddy currents))	mm H Ohm kJ kW	2 M17 0.35 0.024 0.022 12 11
Number of pancake coils/poleLamination materialLamination thicknessInductanceDC resistanceStored energyPower losses rms (without eddy currents))Peak voltage	mm H Ohm kJ kW kV	2 M17 0.35 0.024 0.022 12 11 11 2.5
Number of pancake coils/poleLamination materialLamination thicknessInductanceDC resistanceStored energyPower losses rms (without eddy currents))Peak voltageNumber of cooling circuits/magnet	mm H Ohm kJ kW kV	2 M17 0.35 0.024 0.022 12 11 11 2.5 2
Number of pancake coils/poleLamination materialLamination thicknessInductanceDC resistanceStored energyPower losses rms (without eddy currents))Peak voltageNumber of cooling circuits/magnetWater pressure drop	mm H Ohm kJ kW kV kV	2 M17 0.35 0.024 0.022 12 11 2.5 2 0.5
Number of pancake coils/pole Lamination material Lamination thickness Inductance DC resistance Stored energy Power losses rms (without eddy currents)) Peak voltage Number of cooling circuits/magnet Water pressure drop Water flow	mm H Ohm kJ kW kV kV	2 M17 0.35 0.024 0.022 12 11 2.5 2 0.5 7

Compressor ring, Valeri Lebedev, NFMCC collaboration meeting, LBNL, Jan. 25 - 28, 2009

Rapid cycling synchrotron dipole (continue)

Rapid cycling synchrotron dipole (continue)

Fig. 3. Field homogeneity in the middle plane at injection (black) and extraction (red).

Rapid cycling synchrotron dipole (continue)

Field homogeneity in the magnet gap at I=1 kA.

Field homogeneity in the magnet gap at 0.1 kA.

<u>Rapid cycling synchrotron dipole (continue)</u>

Summary

- The dipole magnet concept was simulated using OPERA 2D package. The magnet parameters could be improved by further pole profile optimization.
- The AC magnetic field simulations should be done to estimate eddy current losses in the coils, laminated core, and beam pipe. The yoke steel properties should be properly chosen to reduce losses.
- The simulations did not take into account the core sagitta, which is 10.2mm. For the straight yoke the good field area width should be increased from 40 mm up to 50.2 mm. Another solution is to make the curved iron core. This case needs more complicated tooling and more labor for assembly.
- A possible solution is to split the straight core. Two straight half cores mounted on the support structure under the angle having common coils.