# Recent Progress on Guggenheim Simulations

Pavel Snopok

January 27, 2009





- Introduction
- 2 Multilayer scheme
- Magnetic field components
- 4 Performance characteristics
- Open cavity lattice
- 6 Summary

# RFOFO ring & helix



RFOFO ring





# RFOFO ring & helix



RFOFO ring



RFOFO helix





# RFOFO ring & helix

### Table: RFOFO and Guggenheim parameters

|                                       | RFOFO    | Guggenheim |
|---------------------------------------|----------|------------|
| Circumference, [m]                    | 33.00    | 33.00      |
| Pitch, [m]                            | 0        | 3.00       |
| Pitch angle, [deg]                    | 0        | 5.22       |
| Radius, [mm]                          | 5252.113 | 5230.365   |
| Maximum axial field, [T]              | 2.77     | 2.80       |
| Coil tilt (wrt orbit), [deg]          | 3.04     | 3.04       |
| Average momentum, [MeV/c]             | 220      | 220        |
| Reference momentum, [MeV/c]           | 201      | 201        |
| RF frequency, [MHz]                   | 201.25   | 201.25     |
| RF gradient, [MV/m]                   | 12.835   | 12.621     |
| Absorber angle, [deg]                 | 110      | 110        |
| Absorber thickness on beam axis, [cm] | 27.13    | 27.13      |









• 5 layers = 165 m





- 5 layers = 165 m
- no shielding between layers





- 5 layers = 165 m
- no shielding between layers
- no shielding of outer layers





- 5 layers = 165 m
- no shielding between layers
- no shielding of outer layers
- the magnetic field at any point of the trajectory is generated by all the coils





- 5 layers = 165 m
- no shielding between layers
- no shielding of outer layers
- the magnetic field at any point of the trajectory is generated by all the coils
- compared to the case with shielding between layers





### Longitudinal component



• G4Beamline



ICOOL





### Vertical component



• G4Beamline



ICOOL





## Radial component



• G4Beamline









# Multilayer vertical component





# Performance characteristics compared

#### Four simulations are considered:

- Original RFOFO lattice
- Ideal Guggenheim (shielding between layers, single turn)
- "Realistic" Guggenheim (shielding between layers, single turn, RF cavities with windows, absorbers with windows)
- 5-layer Guggenheim (no shielding, all 5 layers contributing, all windows)





### Longitudinal emittance



### Transversal emittance



### 6D emittance



#### Transmission



### Merit factor



|                                      |        | Structure |            |            |            |
|--------------------------------------|--------|-----------|------------|------------|------------|
| Parameter                            | Turn # | RFOFO     | Guggenheim | Guggenheim | Guggenheim |
|                                      |        | ideal     | ideal      | realistic  | 5 layers   |
| $\sigma_{\scriptscriptstyle X}$ [mm] | 0      | 41.79     | 41.79      | 41.79      | 41.79      |
|                                      | 5      | 25.48     | 27.05      | 28.81      | 30.72      |
|                                      | 10     | 19.62     | 20.74      | 25.58      |            |
|                                      | 15     | 18.71     | 19.47      | 26.60      | -          |
| $\sigma_y$ [mm]                      | 0      | 42.86     | 42.86      | 42.86      | 42.86      |
|                                      | 5      | 24.14     | 27.72      | 30.10      | 38.08      |
|                                      | 10     | 18.61     | 21.74      | 27.77      | -          |
|                                      | 15     | 18.24     | 20.81      | 26.73      | -          |
| $\sigma_p$ [MeV/c]                   | 0      | 27.85     | 27.85      | 27.85      | 27.85      |
|                                      | 5      | 11.80     | 12.00      | 13.58      | 12.79      |
|                                      | 10     | 7.98      | 8.40       | 11.55      | -          |
|                                      | 15     | 7.37      | 7.45       | 10.83      | =          |
| $\sigma_t$ [ns]                      | 0      | 0.298     | 0.298      | 0.298      | 0.298      |
|                                      | 5      | 0.235     | 0.237      | 0.261      | 0.364      |
|                                      | 10     | 0.171     | 0.166      | 0.201      | -          |
|                                      | 15     | 0.143     | 0.144      | 0.185      | -          |

Table: Decrease in variance for different models





### 6D Cooling



Figure: Reduction in the 6D phase space due to cooling. Gray – initial distribution, black – after 15 turns in the realistic Guggenheim cooling channel (495 m).

#### rf Breakdown problem

- Current design will not work
- High pressure gas HCC may work
  - Effect of beam unknown
  - Integration of rf still a problem

#### For Vacuum rf

- Bucking the field at rf should work
  - Are losses a problem ? see below
- Magnetic insulation should work
  - Are losses a problem ? see below





#### Magnetically insulated RFOFO lattices



This is not quite the magnetically insulated lattice, since it does not have the outer reverse coils, but the fields on axis will be very similar



# One cell of the open cavity lattice as simulated



Scheme



G4BL Simulation



### Local bending vs uniform bend



• Straight cells + 30 deg bend



Curved cells + uniform bend



#### Magnetic Insulation

Form cavity surface to follow magnetic field lines





- All tracks return to the surface
- Energies are very low
- No dark current, No X-Rays!
- No danger of melting surfaces
- But secondary emission → problems ?
- Grateful to SLAC for help
- This cavity is inefficient  $\mathcal{E}_{surface} pprox 4 imes \mathcal{E}_{acc}$  Not acceptable



### Summary

- "Classical" Guggenheim: 50% transmission, 60 times 6D emittance reduction with shielded layers + RF windows + absorber windows.
- RF breakdown problem.
- Open cavity + eventually magnetically insulated lattice = possible solution.
- Open cavity lattice performance is being studied in G4Beamline.
- Prospective: simulate magnetically insulated cavity lattice using Superfish-generated field map for RFs.

