

MC-DFS and NF-RDR High-level Objectives and Deliverables

Michael S. Zisman Center for Beam Physics Accelerator & Fusion Research Division Lawrence Berkeley National Laboratory

> NFMCC Meeting- LBNL January 28, 2009

- Plan has two main components
 - Design (incl. simulations and costing)
 - Component development and tests

- Main elements of MC and NF design activity
 - for the MC DFS
 - Physics and Detector Study (Demarteau and Eichten)
 - Accelerator Design and Simulation Study (Ankenbrandt and Fernow)
 - Cost Estimation Study (Zisman)
 - for the NF RDR (Bross) (under IDS-NF auspices)
 - overall system design and staging scenarios
 - siting issues
 - participation in cost estimation activity

- MC DFS
 - intended to be a "high-end" feasibility study
 - component engineering and costing not fully detailed
 - component level, not bottom-up
 - » want to understand cost in units of, say, LHC or ILC costs
 - defines R&D program (extends beyond this plan)
- NF RDR
 - IDS-NF management will set standards for work
 - we contribute to engineering and costing (select areas)
 - will participate in, and in some cases lead, accelerator design of various subsystems

- To prove feasibility of MC we need to show
 - complete facility design showing acceptable transmission and beam properties
 - detector design capable of operating productively in expected background conditions
 - physics reach meeting or exceeding other technical approaches
 - realistic and affordable cost
- NF feasibility has already been shown but costs need refining

Π

- Objectives
 - establish physics case for MC
 - establish physics reach as f(E, L)
 - develop realistic detector simulation tool
 - including all known background sources
 - develop and simulate baseline detector design
 - LHC upgrade detector will serve as model

- Objectives
 - develop end-to-end simulation of multi-TeV MC
 - based on demonstrated or "almost" demonstrated technologies
 - identify and document required R&D tasks
 - demonstrate (via end-to-end simulations) a baseline design that meets performance requirements

- Objectives
 - develop WBS for facility
 - describe components in sufficient detail to develop cost estimate
 - develop cost estimate system-by-system, including transition areas
 - prepare contingency assessment (component level where possible)

- Objectives (from IDS-NF)
 - deliver RDR for accelerator and detector
 - develop cost estimate at 50-75% uncertainty level
 - identify possible staging scenarios
 - consider possible sites for accelerator + detector
 - educated guess: we'll pick Fermilab as site to study

Substantial overlap with MC design effort; more detailed for costing purposes

TIME LINE

- Desire plan that gives results by end of 2013
 - implies only 5 (4?) years to complete
 - very aggressive schedule
 - even in the absence of funding limitations!
 - we believe we should aspire to deliver information in this time frame
 - "publish or perish" (?)
 - this is one the most challenging parts of the present plan

- Design and simulation effort will come from Labs, universities, and SBIR companies
 - present effort is dominated by Labs
 - expect much of new effort, especially post-docs, to come from universities
 - good way to "introduce" more accelerator physics into academic setting
 - SBIR participation will come in selected areas, e.g.,
 - 6D cooling
 - Li lenses

- Design and simulation effort will permit us to develop a scenario for both MC and NF
- Requires substantial ramp-up in staff and funding to accomplish objectives in the proposed 2013 time frame
- We believe this time frame is significant for worldwide HEP planning

