

1

Loaded Pillbox Cavity

Milorad Popovic

(with Mike, Chuck, Katsuya, Al and Rol)

01/26/2009

Motivation

To fit pressurized cavities in HCC, size of cavity has to be reduced

800 MHz (from Katsuya)

Maximum RF cavity radius = 0.08 m, (pillbox cavity 0.143) Radius of effective electric field (95 % from peak) = 0.03 m

400 MHz:

Maximum RF radius = 0.16 m (pillbox cavity 0.286) Radius of effective electric field = 0.06 m

Optimum electric field gradient = 16 MV/m

For Pill Box Cavity, resonant frequency is

$$\omega = \frac{2.405c}{R\sqrt{\varepsilon_r \mu_r}}$$

Dielectric Loaded RF Cavities

New type of cavity is suggested.

The idea came from conversation with Chuck and Yonehara.

I was told that Al suggested something like this.

‡ Fermilab

SuperFish Model

Muons, Inc.

14.3cm

DielectricCavity, epsD=10, muD=1 F = 814.12558 MHz

400MHz Cavity

DielectricCavity, epsD=10, muD=1 F = 400.52798 MHz

01/26/2009

361MHz Cavity

DielectricCavity, epsD=10, muD=1 F = 361.80859 MHz

01/26/2009

Basic Building Block can be Cavity + Coil

MANX + RF ?

MICE will have ~?MV @200MHz

Other Applications

May be we can use this type of cavity for Neuffer's Phase Rotation Canal. This was Cary Yoshikawa suggestion. The canal needs many cavities in range from ~300 to 200MHz. We can use, let say two sizes of Pill Box Cavity (same size different dielectric!) and adjust frequency in between using different iner radius, re-entrant nose cones!

7 Fermilab

Muons, Inc. Cavities for Neutrino Factory

Schematic of the Neutrino Factory front-end transport system. Initial drift (56.4 m), the varying frequency buncher (31.5m), The phase-energy (ϕ - δ E) rotator (36m), a cooling section. (A 75m cooling length may be optimal.)

Parameter	Drift	Buncher	Rotator	Cooler
Length (m)	56.4	31.5	36	75
Focusing (T)	2	2	2	2.5 (ASOL)
Rf frequency (MHz)		360 to 240	240 to 202	201.25
Rf gradient (MV/m)		0 to 15	15	16
Total rf voltage (MV)		126	360	800

Fermilab

Muons, Inc. What is Next, 5-Years Plan

The projected funding for the 5-year program proposed here.. ...We will also accomplish sufficient hardware R&D (RF, magnets, and cooling section prototyping) to guide, and give confidence in, our simulation studies.

In order to produce a practical helical cooling channel, several technical issues need to be addressed, including: magnetic matching sections for downstream and upstream of the HCC a complete set of functional and interface specifications covering field quality and tunability, the interface with rf structures, and heat load limits (requiring knowledge of the power lead requirements)

To prepare the way for an HCC test section we would:

Develop, with accelerator designers, functional specifications for the magnet systems of a helical cooling channel, including magnet apertures to accommodate the required rf systems, section lengths, helical periods, field components, field quality, alignment tolerances, and cryogenic and power requirements. The specification will also consider the needs of any required matching sections.

Perform conceptual design studies of helical solenoids that meet our specifications, including a joint rf and magnet study to decide how to incorporate rf into the helical solenoid bore, corrector coils, matching sections, etc.

What is Next

SBIR

FIRM NAME:	RESEARCH INSTITUTION:						
Muons, Inc.	Fermi National Accelerator Laboratory						
	Milorad Popovic, subgrant PI						
ADDRESS:	ADDRESS:						
552 N. Batavia Ave.							
Batavia, IL 60510							

Phase I-SBIR/STTR Fiscal Year 2009(All information provided on this page is subject to release to the public.)NAME of PRINCIPAL INVESTIGATOR: Michael NeubauerPHONE NUMBER: (707) 360-5038PROJECT TITLE: 46a Dielectric Loaded RF Cavities

Main Issues

Loss tangent $\tan d = 1/Q_{\text{dielectric}} - 1/Q_{\text{air}}$

Loss tangents of specially formulated alumina with TiO_2 have been reported to be close to sapphire at 1e-5. So it is easy to see that today's ceramics may be used in this novel idea without suffering a great deal in cavity Q at low frequencies.

The other problem with ceramics in vacuum with beams is that of surface charging of the ceramic. And again, much work has been done in coatings, from Chromium Oxide to TiN to, more recently, ion implantation

Air **gap between the dielectric and metal plates** will be one of the issues that must be tested experimentally

- May be ceramics can play additional role, making volume of Hydrogen smaller and making cavity stronger so the walls do not have to be as thick as without ceramics.
- RF power can be fed using loop between two rings.
- Cavities can be put next each other so the side wall can be made thin
- May be we should do experiment in the MTA, with solenoid!

Ceramics EXIST!

Ceramic properties			41-	99	5™									
Alumina		0.11.0	. —	(MAC-A	995W)									
Description	Physical properties	an Cruciole Compan	iy pic											
High purity alumina ceramic of 99.5% AlzOa	Color	•		White										
content. Its purity, chemical resistance and high	Bulk density (fired). Ma/	m³ [lb/in³]		3.86 (0.13	91									
temperature capabilities prove invaluable for	Porosity (apparent), %			0 (fully den	se)									
semiconductor processing applications.	Rockwell hardness (R45	N)		81										
	Compressive strength, N	/IPa [lb/in²]		>2070 [>	300,000]									
Prime features	Flexural strength, MPa	[lb/in²]		310 [45,0	00]									
Electrically and dimensionally stable at high	•			00.0 (10.0										
temperatures.	Thermal conductivity, W	r/m.K (BTU/ft.hr.	.~F] @RT	29.3 [16.9	1									
Low particle generation.	25-200C 177-2	icient, 10⁻/C [100.9E1	10*/*FJ	6 9 13 81										
Dense, non porous and vacuum tight.	200-400C [39	0-750°FI		7.8 [4.3]										
Excellent dielectric properties.	400-600C [75	D-1110°F]		8.3 [4.6]										
Accepts mory-manganese metallising for high temperature brazing of vacuum tight	600-800C [11	10-1470°F]		9.0 [5.0]			Dielectrie	c strengt	h,dck∖	//mn	n [V/mil]@	RT	31.5 [800]
assemblies.	800-1000C [1/	470-1830°F]		9.4 [5.2]				•	-				-	-
• Excellent chemical and abrasion resistance.	Maximum no-load tempe	erature, C [°F]		1725 [315	0]									
Typical applications	Dielectric strength, dc k	V/mm [V/mil] @	RT	31 5 [800]								25C	300C	500C
 Wafer processing and handling devices. 			250	3000 50						-				
Components for semiconductor process	Dielectric constant, K ¹ .	@ 10MHz	9.58	9.92 10	20		Dielectrie	c constar	nt, K',	0	10MHz	9.58	9.92	10.20
chambers, spluttering targets, fixtures, etc.		@ 1000MHz	9.30							-				
 Laser devices for wide range of industrial, 		@ 8500MHz	9.37	9.61 9.8	32					@	1000MHz	9.30	_	_
medical and defence duties.	Dissipation factor, tan δ	, @ 10MHz	0.00003	0.00009 0.0	1040					0				
 Power tubes for klystron and x-ray 		@ 1000MHz	0.00014		/ /					0	8500MHz	9.37	9.61	9.82
equipment.		@ 8500MHz	0.00009	0.00014 0.0	0025					e	000011112	0.07	0.0.	0.02
 How meters and pressure sensors. 	Loss factor, κ^{i} tan δ ,	@ 10MHz	0.00029	2.0089 0.0	1408	1	Dissipati	on factor	, tan δ.	0	10MHz	0.00003	0.00009	0.00040
Specifications		@ 8500MHz	0.00130		1245				,	-				
Quality Assurance to ISO 9002		e 000011112	0.00001	0.00100 0.0	2.10					@	1000MHz	0.00014	_	_
	Volume resistivity, ohm.	.cm								0		0.0001		
MAC production capabilities		@ 25C [77°F]		> 1014						0	8500MHz	0.00009	0.00014	0.00025
Isostatic and dry pressing, green machining.		@ 300C [570	°F]	2.0	x10 ¹¹					0	00000	0.00000	0.000	0.00020
CNC grinding and lapping to very tight		@ 600C [1110	0°F]	6.0x10 ⁸										
tolerances.		@ 900C [1650	0°F]	2.5x10 ⁶										
 Metallising of components. 	Te value, C [°F]			>975 [>1	790]									
 High temperature brazing of assemblies. 														
Prototype, batch and volume production.														
M 4														
🚩 Morgan	Please note that all values quoted are based on test pieces													
Morgan Technical Ceramics	values are not guaranteed in anyway whatsoever and													

www.morgantechnicalceramics.com

only be trea

29/10/2007

Proceedings of PAC07, Albuquerque, New Mexico, USA

TUYC02

‡ Fermilab

HIGH GRADIENT INDUCTION ACCELERATOR*'*

George J. Caporaso[#], S. Sampayan, Y-J. Chen, D. Blackfield, J. Harris, S. Hawkins, C. Holmes, M. Krogh^a, S. Nelson, W. Nunnally^b, A. Paul, B. Poole, M. Rhodes, D. Sanders, K. Selenes^c, J. Sullivan, L. Wang, And J. Watson

Lawrence Livermore National Laboratory, Livermore CA 94551 ^aUniversity Of Missouri, 1870 Miner Circle, Rolla, MS 67890 ^bUniversity Of Missouri, Columbia, MS 65211 ^cTPL Corporation, 3921 Academy Parkway North NE, Albuquerque, NM 87109

Vacuum Cavity for Phase Rotation

Ceramics&StainlessSteel Rings

μ

Test Cavity

Neutrino Factory as 1st Step Toward Muon Collider

Proton Accumulation, Bunching Ring, 10 bunches

Muon Collider Stage

