A Muon Collider Detector

'in Perspective'

Marcel Demarteau

Fermilab

Neutrino Factory and Muon Collider Collaboration Meeting

Berkeley, January 25-28, 2009

Evolution of Frontiers

Evolution of Detectors

• An example

Please note: the LHC was proposed in 1987!

Much more functionality integrated in much smaller volume

Evolution ...

• Feels a bit like ...

Folds into a briefcase !

Benchmark

 Although technologies will certainly make substantial progress one can use current state of the art technology being developed for an e⁺e⁻ collider as a reference

- Premise is that μ C comes online after the LHC has run its full course
 - Need to improve on the measurements at the LHC
- Scenario I: Assume competition between μC and ILC/CLIC
- Scenario II: Assume only μ C and no ILC/CLIC
- Bottom line is to compare performance of detectors (and subsequently what the physics reach is)

Detector Parameters

• Project how these parameters translate to a μ C detector (or, how realistic are the old assumptions) ?

Performance Parameters

Vertexing driven by heavy flavor	
identification	
 Physics reach greatly enhanced by ability to identify c from b, 	
and q from qbar	
and cost	
Tracking driven by measurement of Higgs recoil mass	
Calorimetry driven by differentiation between W and Z in the hadronic decay mode	

- Need a 3σ resolving power for background rejection: jet energy resolution of ~3%

Detector	ILC	CLIC
Vertexing	$5\mu\mathrm{m}\oplusrac{10\mu\mathrm{m}}{\mathrm{psin^{3/2}artheta}}$	$15\mu\mathrm{m} \oplus rac{35\mu\mathrm{m}}{\mathrm{psin^{3/2}artheta}}$
Solenoidal Field	B = 3-5 T	B = 4 T
Tracking	$rac{\delta \mathbf{p}_{\mathrm{T}}}{\mathbf{p}_{\mathrm{T}}^2} = 5\cdot10^{-5}$	$rac{\delta \mathbf{p_T}}{\mathbf{p_T^2}} = 5\cdot \mathbf{10^{-5}}$
EM Calorimeter	$rac{\sigma_{ extbf{E}}}{ extbf{E}} = rac{0.10}{\sqrt{ extbf{E}}} \oplus extbf{0.01}$	$rac{\sigma_{ ext{E}}}{ ext{E}} = rac{0.10}{\sqrt{ ext{E}}} \oplus \textbf{0.01}$
HAD Calorimeter	$rac{\sigma_{\mathbf{E}}}{\mathbf{E}} = rac{0.50}{\sqrt{\mathbf{E}}} \oplus 0.04$	$rac{\sigma_{\mathbf{E}}}{\mathbf{E}} = rac{0.40}{\sqrt{\mathbf{E}}} \oplus 0.04$
E-Flow	$rac{\sigma(\mathbf{E_{jet}})}{\mathbf{E_{jet}}} = 0.03$	$rac{\sigma(\mathbf{E_{jet}})}{\mathbf{E_{jet}}} = 0.03$

Background

Collider	µper bunch	Decays/meter
50 × 50 GeV	4×10^{12}	2.6×10^{7}
250 × 250 GeV	2×10^{12}	2.6×10^{6}
$2 \times 2 TeV$	2×10^{12}	3.2×10^{5}
2.5 × 2.5 TeV LEMC	$1.6 imes 10^{11}$	$2.0 imes 10^4$

from: S. Kahn

- Background estimate from decay muons, inside ± 1.2m central region, 2x2 TeV, for best IR configuration considered to date, with collimating spoilers and SC sweeping magnets
 - Mean decay electron of 700 GeV
- Near uniform distribution across the detector

Neutrino Factory - Muon Collider Meeting, January 25 - 28, 2009 -- M. Demarteau

Vertex Detector

- Inner radius set by avoiding beam background envelope
- Incoherent pair production from $\mu^+\mu^- \rightarrow \mu^+\mu^-e^+e^-$ significant for high energy muon colliders.
 - Estimated cross section of 10 mb giving 3×10^4 electron pairs per bunch crossing.
 - If, in 2 Tesla field, 10% of electrons make it into 10 cm fiducial volume, large background
- There is a limitation to the field strength
- Please note that vertex detectors at an e⁺e⁻ machine end well before a radius of 10cm. Even the Dzero silicon detector has a radial extent of only ~11cm.

THE COMP

Vertex Detector

- Goal in terms of occupancies is 0.01-0.1 hit/mm² for the innermost layers
- Limitation is the pattern recognition
- Even if the occupancies can be kept in check, impact parameter resolution degrades nearly linearly with radius of first layer; pixel size has limitations due to charge sharing

$$\sigma_{r\phi} \approx \sigma_{rz} \approx 5 \oplus 10/(p \sin^{3/2} \vartheta) \quad \text{ILC}$$

$$\sigma_{r\phi} \approx \sigma_{rz} \approx 15 \oplus 35/(p \sin^{3/2} \vartheta) \quad \text{CLIC}$$

- Heavy flavor physics plays key role in physics menu; tagging b's is not sufficient.
- What is a realistic radius for the first layer vertex detector and how does it affect the physics reach?

Vertex Detector Sensor Technology

ISIS

High resistivity epitaxial layer (p)

- Many technologies being explored for vertex detectors
- Even though no technology has been demonstrated to be a viable option for an e⁺e⁻ environment, confident that a technology will be available:
 - Very leisure bunch crossing and repetition rate
- Sensor Options
 - Column Parallel CCD
 - ISIS sensors
 - Monolithic Active Pixels
 - SOI devices
 - DepFet sensors
 - 3D sensors
 - ...
- Possibility for very low mass devices ...

Detector

Processor

ROIC

substrate (p+)

reflected charg

3D

Vertical Integrated Circuits – 3D

- "Conventional MAPS"
 - Pixel electronics and detectors share area
 - Fill factor loss
 - Co-optimized fabrication
 - Control and support electronics placed outside of imaging area
- 3D Vertical Integrated System
 - Fully active sensor area
 - Independent control of substrate materials for each of the tiers
 - Fabrication optimized by layer function
 - Local data processing
 - Increased circuit density due to multiple tiers of electronics
 - 4-side abuttable
- Technology driven by industry
 - Reduce R, L, C for higher speed
 - Reduce chip I/O pads
 - Provide increased functionality
 - Reduce interconnect power, crosstalk

Conventional MAPS

3D Demonstrator Chip

- Fermilab started to actively pursue the 3D technology in early 2006
- MIT Lincoln Laboratories had developed the technology that enables 3D integration, with infrastructure to allow for 3D Multi-Project Runs
- Three-tier pixel array designed by Fermilab: Vertical Integrated Pixel (VIP) chip
 - Pixel array 64x64, 20x20 μ m² pixels; design for 1000 x 1000 array
 - Provides analog and binary readout information
 - 5-bit Time stamping of pixel hit (ILC environment)
 - Token passing scheme readout
 - Sparse readout
- Chip divided into 3 tiers
 - ~ 7 μ m / tier
 - 175 transistors / pixel

VIP-1 Chip Test Results

- VIP-1 chips received and tested: Chip works !
- Major breakthrough in the development of advanced ASICs and integrated detector systems for particle physics
- Opens the way for really advanced, low-mass devices
- Example result: data readout out with sparsification on full array

Tracker

- Goal for momentum resolution: $\frac{\delta p_T}{p_T^2} = 2 - 5 \cdot 10^{-5}$
- Many possibilities for a large volume tracker
 - Silicon strip tracker à la CMS/SiD
 - A highly redundant TPC-based tracking design
 - Emphasizes pattern recognition capabilities, which may be desirable in high background environment
 - Low mass drift chamber
 - Silicon Pixel tracker at lower power
- Establish physics needs for:
 - Particle identification
 - dE/dx
 - V0-reconstruction
 - γ-conversions

μ**C Physics**

- Distinguish quarks from antiquarks
- Discriminate W and Z in hadronic decay mode
- W/Z discrimination leads to requirement on jet energy resolution of 3%

Particle Flow

- Major paradigm at ILC/CLIC is obtaining better energy resolution through Particle Flow Algorithms (PFA)
 - PFA: Reconstruct momenta of individual particles in jet; avoid double counting
 - Measure photons in the ECAL
 - Measure charged particles in the tracking system
 - Subtract calorimeter energy associated with charged hadrons
 - Measure neutral hadrons in the HCAL (+ ECAL)
- PFA: a brilliant idea !
- Novelty is in reducing the role of the hadron calorimeter and thus the hadron energy resolution to the measurement of neutral hadrons only
- Key is the proper association of hits in the calorimeter to the charged particle tracks
- Implications for the calorimetry
 - Granularity, longitudinal and transverse !
 - Sampling of the hadron calorimeter

Particle Flow Viability

- Is PFA viable for multi-TeV collisions ?
- Is PFA viable in the environment of a μC ?
- Pandora PFA Performance
 - At low energies $25\%/\sqrt{E}$ obtained
 - At higher energies resolution degrades
 - Performance of "conventional" good calorimeter
 - Resolution improves with increasing thickness of calorimeter at higher energies
 - Deep calorimeter needed $8\lambda \rightarrow 10\lambda$
- Note: at √s = 3 TeV average parton energy is 240 GeV (averaged over all SM processes)

Particle Flow Viability

- Study within the ILD concept based on Pandora PFA: Confusion term increases nearly linearly with jet energy
 - Cross-over intrinsic resolution and confusion at $E_{jet} \sim 110$ GeV
- Particle Flow calorimetry not à priori obvious for multi-TeV events but it may be possible to get adequate performance tuning HCAL depth, tracker outer radius, B field and by optimizing PFA
- However, IMHO, in the background environment of a μC, the confusion will dominate the resolution in a PFA context and will be near irreducible

- If the premise of required jet energy resolution holds for a μC detector, a lot of R&D needs to be done

B-Field

_

Is there an intrinsic limit to the ability to contain the background ?

Machine Detector Interface

- An integral detector part, which affects the physics program, is the MDI
- **Especially the reach for** SUSY signals are strongly affected by forward instrumentation

At ILC/CLIC

- Lumi-Cal (40-140 mrad)
 - Precise measurement of the integrated luminosity $(\Delta L/L \sim 10^{-3})$ using Bhabha's
 - Veto for 2-γ processes
- Beam-Cal (5-40 mrad)
 - Beam diagnostics using • beamstrahlung pairs
 - Provide $2-\gamma$ process veto
- **Gam-Cal** (< 5mrad)
 - Beam diagnostics using • beamstrahlung photons

Background signal: 2-photon event, may fake the above signal if the electron is not detected.

Z°

Concluding Remarks

- A full updated background study should get high priority, with full simulation of the beam line delivery system and the machine detector interface elements
- The results of this study could dictate the design of the detector
- Without this information, the evaluation of the physics reach may be seriously misjudged
- Study of physics reach should include peripheral measurements such as luminosity spectrum, energy and polarization