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L  Introduction to MuCyc

« Tech-X was awarded a Phase | in July 2008

— “MuCyc: Inverse Cyclotrons for Intense Muon Beams”

— Investigating most unexplored (“risky”) aspects of the
inverse cyclotron for intense muon beam cooling:

« Strength of “realistic” fields required to trap 2x10'2 muons
« Beam properties of muons after ejection from the core

» Effects of matter in the core (muonium formation, muon
capture, ionization)

— Simulations done with the VORPAL EM-PIC code

— Preparation for full end-to-end simulations
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L MuCyc Tasks

 Task 1: Implement one-body radioactive decay
in the EM-PIC code VORPAL

— VORPAL never had to worry about this before!

— Implementation assumes V-A “decay” of a muon to an
electron (no neutrinos need be simulated)

COMPLETE

« Task 2: Vacuum simulations of muon extraction
from the core of the inverse cyclotron

— Studying field strengths for different configurations

COMPLETE

— Considering simple traps (Penning) without injection
— TIME PERMITTING: Paul Trap (demanding!)
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MuCyc Tasks (continued)

 Task 3: Muon beam gjection from the core of
the inverse cyclotron with matter present

— Considering muonium formation (u*) and muon
atomic capture (u-) along with ionization of H and He

— Studying energy and matter density dependence

« Task 4: Investigate improved algorithms for low-
energy muon cooling

— This is the fun “catch-all’!

— Involves thinking about how to extend this work to
make possible full end-to-end simulations
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Summary of this Update

1. Summary of vacuum simulation results
— Pierce-Penning Trap (ideal quadrupole fields)
— Open-Cylindrical Penning Trap
— 100 ns ramping time for “kicker”

2. Summary of matter effects

— lonization effects on confinement and ejection

— Cross sections for muonium formation and muon
atomic capture in H and/or He

— Pessimistic losses in matter at various energies and
at various densities
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Vacuum CASE 1:
The Pierce-Penning Trap

Assuming positive muons
and a ramp time of 100 ns...

Upper/Lower End-caps:
27" -1’ =2z,

Z, =15 mm

Cylindrical Ring:

2 2 2
277 —r" =-1

1y = \/izo =106 mm

6 NFMCC Meeting - 27 Jan 2009 TECH-X CORPORATION



Vacuum CASE 2: The Open-
Cylindrical Penning Trap
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Assuming positive
muons and a ramp
time of 100 ns...



< VACUUM: Radial Spacial
Distributions before Ejection
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< VACUUM: Radial Momentum
Distributions before Ejection
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< VACUUM: Axial Spacial
Distributions before Ejection
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< VACUUM: Axial Momentum
Distributions before Ejection
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<  VACUUM: Temporal
Distributions after Ejection
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< VACUUM: Axial Momentum
Distributions after Ejection
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./ Trapping lonization Effects:
Pierce-Penning with 104 atm H

* 10 keV muon
temperature

* Electrons are
quickly lost,
leaving positive
charge to build
up in the core!

* This leads to
muon losses,
about 30% over
1 muon lifetime.

N



Belkic and Janev, J. Phys. B, 6 (1973).

2 Cross Sections for Muonium
Formation and Muon Capture

Muon Cross Sections in H & He
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Z/ Muonium Formation in H & He
(10-° atm) vs Muon Energy
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Z/ Muonium Formation in H & He
(10 keV) vs Gas Pressure
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AL  Conclusions

* Vacuum simulation results:
— Pierce-Penning design “feasible” with 120 kV
— Open-Cylindrical design “feasible” with 2x voltages!
— Transverse emittance determined by B
— Longitudinal emittance determined by kicker

« Matter effects:
— H-lonization with >10-4 atm could be a problem
— Muon atomic capture may be negligible (>1 keV)
— Muonium formation problematic (<5 keV & >10- atm)
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L  Work to Do

* Vacuum simulations:

— Paul Trap (demanding computationally)
» Matter effects:

— He-lonization in the trap

— Full ejection simulations with H & He gas

* Write the Phase |l proposal (March) to move toward
full end-to-end simulations



