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Motivation

• Maximum gradients were found to depend strongly on 
the external magnetic field

• Consequently the efficiency of the RF cavity is reduced
• A solution to this problem requires the development  of a 

model that describes well the effects of the external 
fields on cavity operation

805 MHzMoretti et al. PRST - AB (2005)
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Introduction and Previous Work 

• Dark currents electrons were observed in a multi-cell 805 
MHz cavity. 

• They arise most likely from local field enhanced regions    
(          ) on the cavity iris. Currents scale as:                     

• Electron emitters are estimated to be around 1000, each 
with an average surface field enhancement βe=184. The  
measured local field gradients where up to 10 GV/m. 

• Enhancement is mainly due material imperfections

Norem et al. PRST - AB (2003) 4
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Model Description

• Step 1: Emitted electrons are getting 
focused by the magnetic field and reach the 
far cavity side.

• Step 2: Those high power electrons  strike 
the cavity surface and penetrate within the 
metal up to a distance d.

• Step 3: Surface temperature rises. The rise 
within the diffusion length δ is proportional 
to the power density g.

• Step 4: At high fields, ΔT approaches 
melting temperature of metal. Breakdown.
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Objectives of this Study

• Model the propagation of emitted electrons from field 
enhanced regions (asperities) through an RF cavity. In 
the simulation  we include:
– RF and externally applied magnetic fields
– The field enhancement from those asperities
– The self-field forces due space-charge

• Estimate the surface temperature rise after impact with 
the wall. See how it scales with magnetic fields and 
emission currents: both theoretically and through 
simulation

• Compare our findings with  the experimental breakdown 
data. 
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Simulation Details 

• What is not similar:
• Asperity location and real geometry. We place asperity on cavity axis. 
• Asperity dimensions; real asperities are in sub-micron range. 

• What is similar to Norem/ Morretti experiment:
• Average field enhancement:
• Emission currents: I=0.1-1 mA

c

b

• Model each individual emitter (asperity) as a prolate spheroid. 
Then, field enhancement at the tip:

• Electron emission is described by Fowler-Nordheim model
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electrons
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Particle Tracking inside RF Cavity
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• Electrons will get focused by the magnetic field and 
move parallel to its direction. 
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Particle Tracking with the RF Cavity



Scale of Final Beamlet Size with B

• For any gradient, final beamlet radius at far side scales 
as: 

At z=8.1cm
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Scale of Final Beamlet Radius with Current
• Beam Envelope Equation:

2 2 2
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:  Canonical angular momentum

 : Beam emittance
: Generalized perveance
: RMS beamlet radius
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• Assume:
– Conditions:
– "Matched Beam" 
– Flat emitter (No radial fields)

0, 0θpε = =
0, 0R R′ ′′= =

• Then:
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Scale of Final Beamlet Size with 
Current and B

• The final beamlet radius scales with the emitter current 
as:

• This result is independent from the magnetic field 
strength 12
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Surface Temperature Rise and Magnetic 
Field
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Comparison Between Simulation and 
Experiment
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• High gradients result to melting at lower magnetic fields



Summary

• Electrons were tracked inside an 805 MHz RF cavity with 
external magnetic fields

• Electrons, get focused by the external magnetic field and 
hit the cavity wall with large energies (1 MeV). Cause 
rise of surface temperature.

• Surface temperature scales with the external magnetic  
field   as ~      and with the emission currents as

• Therefore at high fields and high  gradients melting can 
occur.

• Our model scales reasonably well with the experimental 
data however further studies are needed. 
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