International Design Study Front End & Variations

David Neuffer

January 2009

IDS front end

- Introduction
- Baseline-
 - International Scoping Study (ISS)
 - 20⁺ GeV NuFactory
- Variations
 - Shorter cases
 - Collider capability
- Difficulties
- > rf Compatibility
 - Large gradient with large B
 - Open-cell? Insulated?
- > 4 GeV NuFactory option -
 - Overview
 - Variations

v beam

B=1 T

iron (4 cm) scintillators (1cm)

1cm transverse resolutio

Signal

hadron-jet

Heutrino Factor

IDS Overview

- International Scoping Study v-Factory parameters
 - ~4MW proton souce producing muons, accelerate to 20+ GeV, long baseline mu decay lines (2500/7500km)
- International Design studydevelop that into an engineering design
 - cost specification

FFAG/synchrotron option Linac option Proton Driver Neutrino Beam Hg Target Buncher Bunch Rotation 755 m Cooling 0.9-3.6 GeV Linac to RI A Muon Storage Ring 0.9 GeV 3.6-12.6 GeV RLA 12.6-25 GeV FFAG Neutrino Beam Muon Storage Ring 1.5 km

Figure 1: Schematic drawing of the ISS baseline for the Neutrino Factory accelerator complex. The various systems have been drawn to scale.

- Front end (Target to Linac) is based on ISS study
 - capture/decay drift
 - µ buncher/rotator
 - ionization cooling

ISS baseline Proton source

- Proton source is somewhat site-dependent ...
- > 4MW
 - 50Hz, 5×10¹³, 10 GeV
- Three proton bunches per cycle
 - Separated by ?? 40 to 70µs
 - Rf needs to recover (?) between passages
- Hg-jet target scatters in 40µs

- > Target is immersed in high field solenoid
- > Particles are trapped in Larmor orbits
 - B= 20T -> ~2T
 - Particles with $p_{\perp} < 0.3 B_{sol}R_{sol}/2=0.225GeV/c$ are trapped
 - Focuses both + and particles
 - Drift, Bunch and phase-energy rotation

Form bunches first

▷ Φ-E rotate bunches

Study2B (and ISS)

Target

- Drift -110.7m
- > Bunch -51m
 - δ(1/β) =0.008
 - 12 rf freq., 110MV
 - 330 MHz \rightarrow 230MHz
- > φ-E Rotate 54m (416MV total)
 - 15 rf freq. 230 \rightarrow 202 MHz
 - $P_1=280$, $P_2=154 \delta N_V = 18.032$
- Match and cool (80m)
 - 0.75 m cells, 0.02m LiH
- \succ Captures both $\mu^{\scriptscriptstyle +}$ and $\mu^{\scriptscriptstyle -}$
 - ~0.2 µ/(24 GeV p)

Features/Flaws of Study 2B Front End

- Fairly long system ~300m long (217 in B/R)
- Produces long trains of ~200 MHz bunches
 - ~80m long (~50 bunches)
 - Transverse cooling is ~2½ in x and y, no longitudinal cooling
 - Initial Cooling is relatively weak ? -
- Requires rf within magnetic fields
 - in current lattice, rf design; 12 MV/m at B = ~2T, 200MHz
 - MTA/MICE experiments to determine if practical

> For Collider (Palmer)

- Select peak 21 bunches
- Recombine after cooling
- ~1/2 lost

Try Shorter Buncher

- 217m ⇒ **125m**
- 57m drift, 31m buncher, 36m rotator
- Rf voltages up to 15MV/m (×2/3)
- > Obtains ~0.25 μ/p_{24} in ref. acceptance
- > 80+ m bunchtrain reduced to < 50m
 - ▲N_B: 18 -> 10
- More suitable for collider

12.9 m 43.5 m 31.5 m 36 m rotator capture buncher drift 50 cm 201.25 MHz **RF** cavity 1 cm LiH 75 cm cell 23 cm vacuum 瓷 201 12 i. 22 Ē ÷, S \odot

Rotator 36 m long "Cool and Match" 3 m (4x75 cm cells) "Cool" 90 m of

75 cm cells 11

> Simulations of front end and cooling agree

- ICOOL and G4Beamline results can be matched
- dE/dx is larger in ICOOL, Phasing of rf cavities uses different model
- > Buncher rotator cooler sequence can be developed in both codes
- > Optimization: Reduce number of independent freq.
 - Buncher- 42 cavities, Rotator- 48 cavities
 - 360 to 202 MHz
 - Reduce # by 1/3 (14 in buncher; 16 in rotator)
 - Nearly as good capture (<5% less)
 - But: Reduce by 1/6 is ~20% worse
 - (7 buncher, 8 rotator frequencies)

Need rf option

Pillbox cavities

- Cannot hold high enough gradient at high B (?)
- > Open cell cavities
 - can hold high gradient with B-Field (?)
 - 200 Mhz experiment needed
- Gas-filled cavities ?
 - Suppresses breakdown
 - Would beam-induced electrons/ions prevent use?

> "magnetically insulated" cavity

- also open-cell (?)
- fields similar to alternating solenoid

Gas-filled rf cavities ??

3 MeV/m

- > Breakdown suppressed, Pressure (psia) at T=293K 2m400 600 8001000 1200 1400 1600 100 even in magnetic fields Cu Data: max gradient 49.9 MV/m Mo Data: max gradient 63.8 MV/m 80 Be Data: max gradient 52.3 MV/m Gradient (MV/m) Mo Data: max gradient 65.5 MV/m at B=3 electrons produced in gas 50 may drain cavities? 40 30 • at high intensities? $e^{+}H_2 \rightarrow H^{+}H^{-}$ Electrode breakdown region 20 without recombination? 10 Paschen region of 0.0040.005 0.003 0.0060.007 0.008 Tollestrup 0.0020.009 0.01Density (g/cm²)
- Gas-filled rf cavities cool beam
 - H₂ is best possible cooling material
 - improves performance over LiH cooling ...
- Need detailed design
 - Be windows /grid ?
 - ~200MHz

Use ASOL lattice rather than 2T

€^{0.50}

iipeg 0.25

0.00

-0.25

0.0

length (m)

- "magnetically insulated" lattice similar to alternating solenoid
- > Study 2A ASOL
 - B_{max}= 2.8T, β*=0.7m,
 - P_{min}= 81MeV/c
 - 2T for initial drift
 - Low energy beam is lost
 - (P < 100MeV/c lost)
 - Bunch train is truncated
 - OK for collider
- Magnetic focusing similar to magnetically insulated

0.5000

40.00

0.0000

ASOL results

Simulation results

- 2T -> 2.8T ASOL
- 0.18 μ/24 GeV p, 0.06 μ/8 GeV p
- Cools to 0.0075m
- shorter bunch train

> Try weaker focusing

- 1.3T->1.8T ASOL
- 0.2μ/24 GeV p, 0.064 μ/8 GeV p
- ~10% more µ/p
- bunch train not shortened
- Cools to 0.0085m; less cooling

Variation

- Use 2T -> 2.8T ASOL
- capture at higher energy

- > Baseline (2T -> ASOL) had
 - ~0.25 µ/24 GeV p
 - ~0.08 μ/8 GeV p

- > Captures more muons than 220 MeV/c
 - For 2.T -> 2.8T lattice
 - But in larger phase space area
 - Less cooling for given dE/ds Δs
- Better for collider
 - Shorter, more dense bunch train
 - If followed by longitudinal cooling

- Use magnetized totally active scintillator detector
- 4 GeV muons provide adequate neutrino beam for detector
- Fermilab to DUSEL (South Dakota) baseline -1290km

A. Bross et al. Phys. ReV D 77, 093012 (2008)

C. Ankenbrandt et al. Fermilab-Pub-09-001-APC

Detector, Sensitivity

- Factory at Fermilab,
 Detector at Homestake, SD
 - ~1290km baseline
- Totally Active Scintillator
 Detector
 - ~20000 m³
- > B=0.5T magnetic field
 - easily identify charge and identify particles
- v's from 4 GeV µ's
 - ~0.5GeV v's
 - no charged T

4 GeV v-factory Front End

➢ Proton driver ≈ IDS

- 4MW
 - 8GeV p, 5×10¹³, 60Hz
- > Front End
 - ~same as IDS
 - Used shorter baseline example for paper

> Acceleration (A. Bogacz)

- Linac + RLA ~0.3 GeV to 4 GeV
- accelerates both μ^+ and μ^-
- no FFAGs
- Storage Ring (C. Johnstone)
 - C = 900m, r = 15cm
 - half the circumference
 - B < ~1T
 - conventional or permane magnet

Total

ST 2B

- Front End is ~30% of total costs
- Dominated by transport (~L) and power supply costs (~V²L)
- > Shorter B/R ~ 30 MP\$ less
 - cooling not changed yet
- > \$ 4 GeV Accelerator ($\sim \frac{1}{2}$)
 - saves ~220 MP\$
 - storage ring ~40MP\$ less
- > 934 -> 630 MP\$
- > Upgradeable by adding more acceleration

		-			
System		M\$		M\$	%
Target, capture, 18 m drift		97.3		96.1	99
	Target	91.5	Target	89.7	
	18 m Drift	5.8	18 m Drift	6.4	
Bunch and Phase Rotate		393.6		148.6	38
	Rotator	306.7	82 m Drift	19.3	
	Mini-Cool	11.3	Buncher	44.8	
	Buncher	75.6	Rotator	84.5	
cool		310.2		185.1	60
Acceleration		544.2		421.4	77
	Match	56.7	Match	23.1	
	Pre-Acc	136.8	Pre-Acc	98.5	
	RLA	350.9	RLA	99.6	
	1		FFAG 1	91.1	
			FFAG 2	109.1	
Ring		82.5		82.5	100

1427

Table 12 Study Hb Costs

934

65

- > High frequency phase-energy rotation + cooling can be used for the IDS
 - Baseline system is ~300m long
- > Shorter system better for Collider
 - Shorter bunch train; denser bunches
- > Rf in magnetic field problem must be addressed
 - Is open-cell cavity possible?
 - "magnetic insulated" lattice could be used rather than B = 2 or 1.75 T lattice
 - Slightly worse performance (?)

- 217m ⇒ **86m**
- 38m drift, 21m buncher, 27m rotator
- Rf voltages 0-15MV/m, 15MV/m (×2/3)
- > Obtains ~0.23 μ/p in ref. acceptance
 - Slightly worse than previous ?
- 80+ m bunchtrain reduced to < 30m</p>
 - 18 bunch spacing dropped to 7

Features of Study 2B baseline

- Has pillbox cavities with Be foils throughout
 - Cools beam from 0.017 to 0.014 in rotator
 - Cools further to 0.006 in cooling channel
- > Are Pillbox cavities a good idea?
 - Rf breakdown across the cavity may be a problem
 - ? Particularly

rms=0.034159m Px,rr	ns = 0.011126GeV/c		
			-
0.30	a	.00	0.30

