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Outline

 IDS front end 
 Introduction
 Baseline-

• International Scoping Study (ISS)
• 20+ GeV NuFactory

 Variations
• Shorter cases
• Collider capability

 Difficulties
 rf Compatibility

 Large gradient with large B
 Open-cell? Insulated?

 4 GeV NuFactory option
 Overview 
 Variations



3

 International Scoping Study 
ν-Factory parameters
 ~4MW proton souce producing 

muons, accelerate to 20+ GeV, 
long baseline mu decay lines 
(2500/7500km)

 International Design study-
develop that into an 
engineering design
 cost specification

 Front end (Target to Linac)  
is based on ISS study
 capture/decay drift
 μ buncher/rotator
 ionization cooling

IDS Overview



4

ISS baseline Proton source

 Proton source is somewhat 
site-dependent …

 4MW
 50Hz, 5×1013, 10 GeV

 Three proton bunches per 
cycle
 Separated by ?? 40 to 

70μs
 Rf needs to recover (?) 

between passages

 Hg-jet target scatters in 
40μs
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Solenoid lens capture

 Target is immersed in high field solenoid
 Particles are trapped in Larmor orbits

 B= 20T -> ~2T
 Particles with p⊥ < 0.3 BsolRsol/2=0.225GeV/c are trapped
 Focuses both + and – particles
 Drift, Bunch and phase-energy rotation
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High-frequency Buncher and φ-E Rotator

 Form bunches first

 Φ-E rotate bunches
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Study2B  (and ISS)

 Drift –110.7m

 Bunch -51m
 δ(1/β) =0.008
 12 rf freq., 110MV
 330 MHz → 230MHz

 φ-E Rotate – 54m – (416MV total)
 15 rf freq. 230→ 202 MHz
 P1=280 , P2=154 δNV = 18.032

 Match and cool (80m)
 0.75 m cells, 0.02m LiH

 Captures both μ+ and μ-

 ~0.2 μ/(24 GeV p)
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Study 2B ICOOL simulation (NB=18)

s = 1m s=109m

s=166m s= 216m

-40 60

500
MeV/c

0

Drift

Bunch

Rotate

500
MeV/c

0
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Features/Flaws of Study 2B Front End

 Fairly long system  ~300m long (217 in B/R) 

 Produces long trains of ~200 MHz bunches
 ~80m long (~50 bunches)

 Transverse cooling is ~2½ in x and y, no longitudinal cooling

 Initial Cooling is relatively weak ? -

 Requires rf within magnetic fields 
 in current lattice, rf design; 12 MV/m at B = ~2T, 200MHz

 MTA/MICE experiments to determine if practical

 For Collider (Palmer)
 Select peak 21 bunches
 Recombine after cooling
 ~1/2 lost

-40 60m

500 MeV/c
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Try Shorter Buncher 

 Reduce drift, buncher, rotator to get 
shorter bunch train:
 217m  ⇒ 125m  
 57m drift, 31m buncher, 36m rotator
 Rf voltages up to 15MV/m (×2/3)

 Obtains ~0.25 μ/p24 in ref. acceptance

 80+ m bunchtrain reduced to < 50m
 ΔNB: 18 -> 10

 More suitable for collider

-30 40m

500MeV/c
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12.9 m 43.5 m 31.5 m 36 m
drift buncher rotatorcapture

Front End  in G4beamline: w. C. Yoshikawa

“Cool and Match” 3 m (4x75 cm cells) “Cool” 90 m of 
75 cm cells

Rotator 36 m long

75 cm cell 1 cm LiH

23 cm vacuum

50 cm 
201.25 MHz 

RF cavity
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Comparisons of ICOOL and G4BL

 Simulations of front end and cooling agree
 ICOOL and G4Beamline results can be matched
 dE/dx is larger in ICOOL, Phasing of rf cavities uses 

different model 
 Buncher – rotator – cooler sequence can be 

developed in both codes
 Optimization: Reduce number of independent freq.

 Buncher- 42 cavities, Rotator- 48 cavities 
• 360 to 202 MHz

 Reduce # by 1/3 (14 in buncher; 16 in rotator)
 Nearly as good capture (<5% less)
 But: Reduce by 1/6 is ~20% worse 

• (7 buncher, 8 rotator frequencies)
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Rf in magnetic fields?

 Baseline has up to 12 MV/m in 
B=1.75to 2T solenoid

 Appears to be outside what is 
permissible?
 V’max ∝ (frf)1/2  ???

 Buncher may only need ~5MV/m
 Rotator needs more …
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Need rf option
 Pillbox cavities

 Cannot hold high enough gradient 
at high B (?)

 Open cell cavities
 can hold high  gradient with B-

Field  (?)
 200 Mhz experiment needed

 Gas-filled cavities ?
 Suppresses breakdown 
 Would beam-induced 

electrons/ions prevent use?
 “magnetically insulated” cavity

 also open-cell (?)
 fields similar to alternating 

solenoid

800MHz

800MHz
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Gas-filled rf cavities ??

 Breakdown suppressed, 
even in magnetic fields

 electrons produced in gas 
may drain cavities?
 at high intensities?
 without recombination?

 Tollestrup

 Gas-filled rf cavities cool 
beam 
 H2 is best possible cooling 

material
 improves performance 

over LiH cooling … 
 Need detailed design

 Be windows /grid ?
 ~200MHz

3 MeV/m

e-+H2→H+H-
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Use ASOL lattice rather than 2T

 “magnetically insulated” lattice 
similar to alternating solenoid

 Study 2A ASOL
 Bmax= 2.8T, β*=0.7m,
 Pmin= 81MeV/c
 2T for initial drift
 Low energy beam is lost 

• (P < 100MeV/c lost)
• Bunch train is truncated

 OK for collider

 Magnetic focusing
similar to magnetically 
insulated

+ -
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2T -> ASOL
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ASOL results 
 Simulation results

 2T -> 2.8T ASOL
 0.18 μ/24 GeV p, 0.06 μ/8 GeV p 
 Cools to 0.0075m
 shorter bunch train

 Try weaker focusing
 1.3T->1.8T ASOL 
 0.2μ/24 GeV p, 0.064 μ/8 GeV p
 ~10% more μ/p
 bunch train not shortened
 Cools to 0.0085m; less cooling

 Variation 
 Use 2T -> 2.8T ASOL
 capture at higher energy

 Baseline (2T -> ASOL) had
 ~0.25  μ/24 GeV p
 ~0.08  μ/8 GeV p
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Variant-capture at 0.28 GeV/c

0.0

1.0GeV/c

1.0GeV/c

0.0

2T → 2.8T ASOL

-30m +40m -30m +40m

1.0GeV/c

s=59m s=66m

s=126m
s=200m
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Capture at 280 MeV/c

 Captures more muons than 220 MeV/c 
 For 2.T -> 2.8T lattice
 But in larger phase space area
 Less cooling for given dE/ds Δs

 Better for collider
 Shorter, more dense bunch train
 If followed by longitudinal cooling 

220 MeV/c 280 MeV/c
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Variation: 4 GeV ν-Factory

 Use magnetized totally 
active scintillator detector 

 4 GeV muons provide 
adequate neutrino beam for 
detector

 Fermilab to DUSEL (South 
Dakota) baseline -1290km

C. Ankenbrandt et al.
Fermilab-Pub-09-001-APC

A. Bross et al.
Phys. ReV D 77, 093012 (2008)
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Detector, Sensitivity

 Factory at Fermilab, 
Detector at Homestake, SD
 ~1290km baseline

 Totally Active Scintillator 
Detector
 ~20000 m3

 B=0.5T magnetic field
 easily identify charge and 

identify particles

 ν’s from 4 GeV μ’s
 ~0.5GeV ν’s
 no charged τ

3 
cm

1.5 
cm

15 
m
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4 GeV ν-factory Front End 
 Proton driver ≈ IDS 

 4MW
• 8GeV p, 5×1013

, 60Hz
 Front End 

 ~same as IDS
 Used shorter baseline 

example for paper

0

0.1

0.2

μ/p
(8GeV)

μ/p within 
acceptance

All μ’s

Transverse emittance

εt,,N

(m)

1.5 Zμ
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4 GeV Neutrino Factory

 Acceleration (A. Bogacz)
 Linac + RLA ~0.3 GeV to 4 GeV
 accelerates both μ+ and μ-

 no FFAGs

 Storage Ring (C. Johnstone)

 C = 900m, r = 15cm 
• half the circumference 

 B < ~1T 
• conventional or permanent 

magnet

0.7 GeV/pass
4 GeV

0.9 GeV0.3 GeV

186  m

129  m
Highest arc circumference: 225 m

0.7 GeV/pass
4 GeV

0.9 GeV0.3 GeV

186  m

129  m
Highest arc circumference: 225 m
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Cost savings for 4 GeV ν-Factory
(Palmer-Zisman, Mucool 322)

 Front End is ~30% of total 
costs

 Dominated by transport (∝L) 
and power supply costs (∝V2L)

 Shorter B/R ~ 30 MP$ less
 cooling not changed yet

 $ 4 GeV Accelerator (~½ )
 saves ~220 MP$
 storage ring  ~40MP$ less

 934 -> 630 MP$

 Upgradeable by adding more 
acceleration

ST 2 ST 2B
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Discussion

 High frequency phase-energy rotation + cooling 
can be used for the IDS
 Baseline system is ~300m long

 Shorter system better for Collider 
 Shorter bunch train; denser bunches

 Rf in magnetic field problem must be addressed 
 Is open-cell cavity possible?
 “magnetic insulated” lattice could be used rather than B = 

2 or 1.75 T lattice
• Slightly worse performance (?)
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Even Shorter Bunch train ~(2/3)2

 Reduce drift, buncher, rotator to get 
even shorter bunch train:
 217m  ⇒ 86m  
 38m drift, 21m buncher, 27m rotator
 Rf voltages 0-15MV/m, 15MV/m (×2/3)

 Obtains ~0.23 μ/p in ref. acceptance
 Slightly worse than previous ?  

 80+ m bunchtrain reduced to < 30m 
 18 bunch spacing dropped to 7

-20 30m

500MeV/c
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Features of Study 2B baseline

 Has pillbox cavities with 
Be foils throughout
 Cools beam from 0.017 to 

0.014 in rotator 
 Cools further to 0.006 in 

cooling channel 
 Are Pillbox cavities a good 

idea?
 Rf breakdown across the 

cavity may be a problem
 ? Particularly 

eperp
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