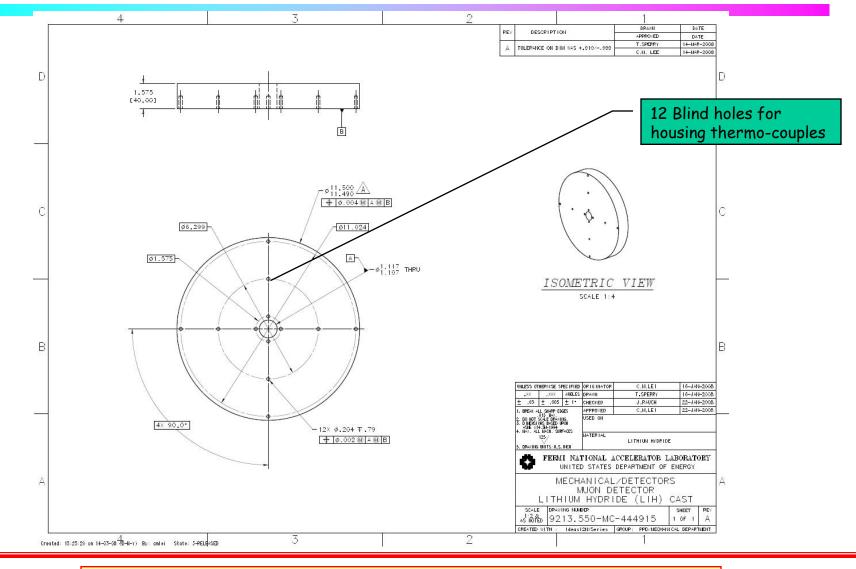


LiH Absorber R&D

Alan Bross January 26, 2009

LiH Absorber in Cooling Channel

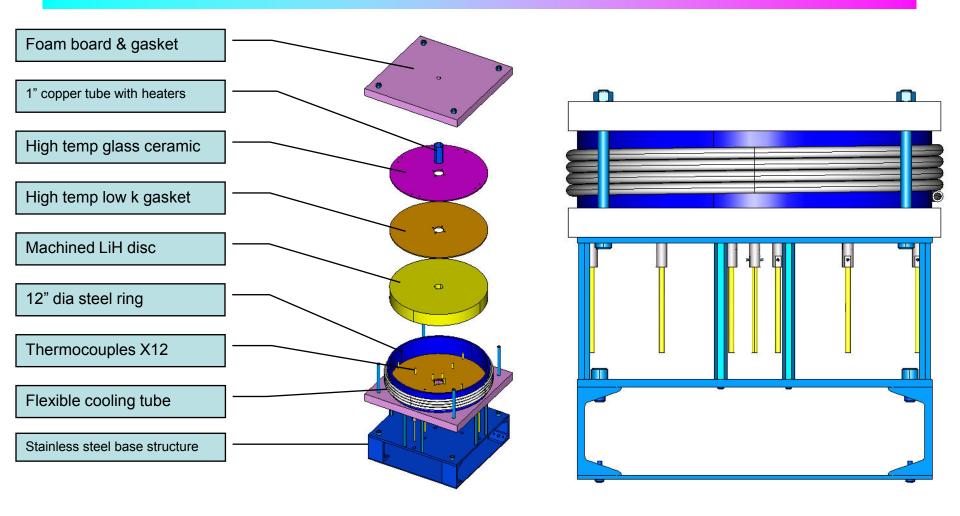
- LiH absorbers are now the "baseline" for the initial 4D cooling
 - Replaced LH₂
- The issues have to do with the material properties of LiH
 - Thermal characteristics
 - Thermal conductivity
 - Stability
 - Radiation Stability
- Program Goal
 - Test Thermal properties of Hot-Isostatic Pressed LiH
 - Claimed to yield material with 98%+ theoretical density
 - Best thermal conductivity



LiH Disc Fabrication

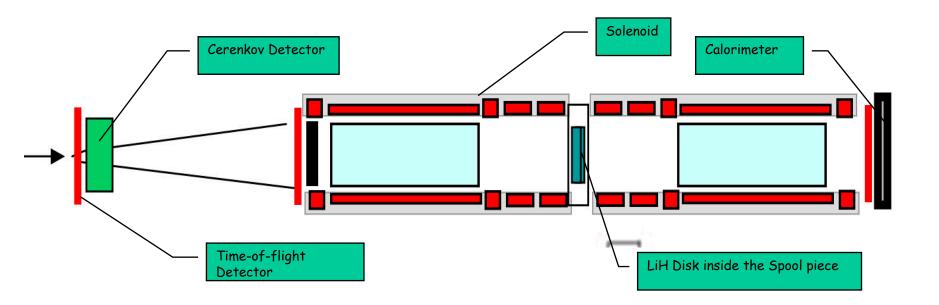
- Subcontracted for production at Y12
 - Produced by Hot Isostatic Pressing
 - Produced using existing mold design
 - · Mechanical properties of final parts will be measured
 - Density, hardness, etc
 - Final Parts to be chemically tested
 - · X-Rayed by Radiography to ensure no voids
 - Machined to size
 - Dimensional inspection
 - · Coated with vapor barrier
 - · Process steps STILL under discussion and Need to be finalized
 - · Packaged in drum type container
 - Shipped to FermiLab via Fed-X
- Production will consist of
 - · 30 and 50 cm diameter disks (+2" disks for destructive testing)

Instrumented 30 \varnothing cm Disk

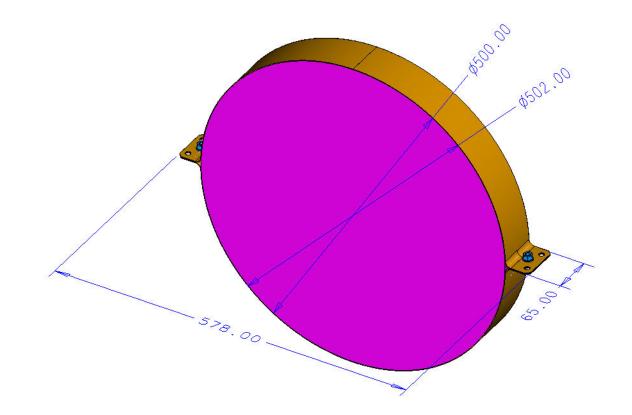


Alan Bross

NFMCC Meeting


Thermal Measurement Test Setup

辈 Fermilab	Alan Bross	NFMCC Meeting	March 2008	5
				_


MICE Step III.1

 Produce 50 cm Ø X 6.5 cm thick disk for MICE for first "cooling" measurment

LiH Absorber for MICE Step III.1

Fermilab Alan Bross NFMCC Meeting March 2008					
	🛟 Fermilab	Alan Bross	NFMCC Meeting	March 2008	

- All the technical specifications and production issues are resolved
- The only outstanding issue was coating the parts with a water vapor barrier
 - Parylene C (Preferred)
 - Epoxy
- The coating is a safety issue only
 - For both Fermilab and RAL
- But has led to a protracted discussion because of cost

• Provides 10X better vapor barrier than epoxy

Table 3. Parylene Barrier Properties								
Gas Permeability at 25°C, (cc+mm)/(m²+day+atm) ^a Water Vapor Transmission Rate								
Polymer	N ₂	0 ₂	CO ₂	H ₂	(g·mm)/(m²·day)			
Parylene N	3.0	15.4	84.3	212.6	0.59 ^b			
Parylene C	0.4	2.8	3.0	43.3	0.08°			
Parylene D	1.8	12.6	5.1	94.5	0.09 ^b			
Parylene HT	4.8	23.5	95.4		0.22 ^d			
Acrylic (AR)	-	-	-	-	13.9 ^e			
Epoxy (ER)	1.6	2.0 - 3.9	3.1	43.3	0.94 ^e			
Polyurethane (UR)	31.5	78.7	1,181	-	0.93 - 3.4 ^e			
Silicone (SR) – 19,685 118,110 17,717 1.7 – 47.5°								
^a ASTM D 1434 ^b ASTM E 96 (at 90% RH, 37°C) ^c ASTM F 1249 (at 90% RH, 37°C) ^d ASTM F 1249 (at 100% RH, 38°C) ^e <i>Coating Materials for Electronic Applications</i> , Licari, J.J., Noyes Publications, New Jersey, 2003.								

‡ Fermilab

Alan Bross

NFMCC Meeting

- Although Parylene C is preferred, the system at Y12 needs to be re-commissioned and this is adding a large (\$50k) cost to the project
 - Negotiating cost-sharing
- No commercial vendor for coating with Parylene (there are many) would do it on the LiH
- Fermilab Safety prefers we DO NOT do the coating in-house
- Setting up a phone meeting next week with Y12 with all the principals (has been EXTREMELY difficult) to resolve this issue once and for all.
 - Spray epoxy coat @Y12 is fall-back