

Neutrino Factory and Muon Collider Collaboration Meeting

NFMCC Status and Update January, 2009 Alan Bross

Collaboration Meeting XIII

Well, unfortunately we are still getting older But we also still manage to get Better

- It has been another productive year
 - MuCool is entering a new phase with beam experiments
 - MERIT continues analysis of its data
 - MICE: a good deal of beam data has now been accumulated
 - A 5 Year Plan for Neutrino Factory and Muon Collider R&D has been submitted to DOE
- We hope for the coming year
 - First beam experiment in the MTA
 - MICE makes first cooling measurement
 - Neutrino Factory International Design Study
 - Muon Collider Design Effort
 - Action on 5 Year Plan?

To study and develop the theoretical tools, the software simulation tools, and to carry out R&D on the hardware that is unique to the design of Neutrino Factories and Muon Colliders

• Extensive experimental program to verify the theoretical and simulation predictions

Mission \rightarrow Vision

Muon "Complex" Evolution At Fermilab

•

Muon Acceleration and Future HEP Facilities Neutrino Factory & Muon Collider

Neutrino Factory

- IDS Baseline (FS1, FS2(a)(b), ISS)
 - \star 25 GeV μ storage ring
 - 4 GeV Option under study

- MC: One Concept
 - > 4 TeV Center-of-Mass
 - Rapid-Cycling Synchrotron Acceleration

Common Front-End, SMALL FOOTPRINT

Physics Motivation

We believe a excellent case has been made

NF Motivation - Physics Reach (ISS)

- The NF gives the best Physics Reach
 - NF \equiv Precision
- Even with sin²2θ₁₃ in the range of 5 X 10⁻⁴ to 10⁻³, these very aggressive "conventional" experiments – Run Out of Steam
- Similar arguments can be made for sin²20₁₃ discovery reach and determination of the neutrinomixing mass Hierarchy

NF: 4MW, 100KT MIND, 4000 & 7500 BL

Muon Collider - Motivation

Reach Multi-TeV Lepton-Lepton Collisions at High Luminosity

Muon Colliders may have special role for precision measurements. Small ∆E beam spread -Precise energy scans

Small Footprint -Could Fit on Existing Laboratory Site

Alan Bross

Organization

Some Changes This Year

Muon Acceleration R&D Organization

• R&D Program carried out by two groups

- Neutrino Factory and Muon Collider Collaboration
- Fermilab Muon Collider Task Force

NFMCC Organization

Alan Bross NFMCC Meeting

January 2009

Collaborating Institutions

US		International	
National Labs ANL BNL FNAL LBNL ORNL TJNAF	Universities Chicago Cornell Illinois IIT Indiana Iowa Michigan State Mississippi	National Labs Budker CERN DESY INFN JINR, Dubna KEK RAL TRIUMF	<u>Universities</u> Karlsruhe Imperial College Lancaster Max Planck Osaka Oxford Pohang Tel Aviv
Princeton UC-Berkeley UC-Davis UC-Los Angeles UC-Riverside Wisconsin	Corporate Partners Muons Inc. Tech-X Corporation		

January 2009

Executive Board

A. Bross	FNAL	Co-Spokesperson	bross@fnal.gov
H. Kirk	BNL	Co-Spokesperson	kirk@bnl.gov
A. Sessler	LBNL	Associate Spokesperson	amsessler@lbl.gov
I. Ben-Zvi	BNL		benzvi@bnl.gov
D. Cline	UCLA		dcline@physics.ucla.edu
S. Geer	FNAL		sgeer@fnal.gov
G. Hanson	UC Riverside		Gail.Hanson@ucr.edu
D. Kaplan	IIT		kaplan@fnal.gov
K. McDonald	Princeton University		kirkmcd@Princeton.edu
R. Palmer	BNL		palmer@bnl.gov
D. Summers	U. Mississippi		summers@phy.olemiss.edu
A. Tollestrup	FNAL		alvin@fnal.gov
J. Wurtele	LBNL/UC Berkeley		wurtele@physics.berkeley.edu
M. Zisman	LBNL	Project Manager	mszisman@lbl.gov
J. Gallardo	BNL	Scientific Secretary	gallardo@bnl.gov

January 2009

Technical Board

Alan Bross	Co-Spokesperson	bross@fnal.gov
Rick Fernow		fernow@bnl.gov
Michael Green		magreen@lbl.gov
Don Hartill		dlh@lns.cornell.edu
Dan Kaplan		kaplan@fnal.gov
Harold Kirk	Co-Spokesperson	kirk@bnl.gov
Kirk McDonald		kirkmcd@Princeton.edu
Jim Norem		norem@anl.gov
Bob Rimmer		rarimmer@jlab.org
Mike Zisman	Project Manager	MSZisman@lbl.gov

Theory & Simulation Board

R. Fernow (BNL)	Chair	fernow@bnl.gov
H. Kirk (BNL)	Targetry Simulation Co-ordinator	kirk@bnl.gov
D. Neuffer (FNAL)	Front-End Systems Co-ordinator	neuffer@fnal.gov
R. Fernow (BNL)	Emittance Exchange/Ring Cooler Coordinator	fernow@bnl.gov
S. Berg/ C. Johnstone (BNL)/(FNAL)	Acceleration Simulation Coordinators	jsberg@bnl.gov cjj@fnal.gov
A. Sessler (LBNL)	Theory Co-ordinator	amsessler@lbl.gov
M. Berz (MSU)		berz@msu.edu
G. Hanson (UCR)		Gail.Hanson@ucr.edu
E. Keil (FNAL)		Eberhard.Keil@t-online.net
S. Koscielniak (Triumf)		shane@triumf.ca
R. Palmer (BNL)		palmer@bnl.gov

Targetry R&D: Mercury Intense Target Experiment MERIT Co-Spokespersons: Kirk McDonald Harold Kirk

Ionization Cooling R&D: MuCool and MICE MuCool Spokesperson: Alan Bross US MICE Leader: Dan Kaplan

Simulations & Theory Coordinator: Rick Fernow

Fermilab Muon Collider Task Force

Highlights Reel

- We actually Finished Something!
 - & With Great Success!
- You will hear about the latest data analysis results and status of the continuing targetry program

- Study the limits on Accelerating Gradient in NCRF cavities in magnetic field
- It has been proposed that the behavior of RF systems in general can be accurately described (predicted) by universal curves
 - Electric Tensile Stresses are important in RF Breakdown events
- This applies to all accelerating structures
- Fundamental Importance to both NF and MC
 - Muon capture, bunching, phase rotation
 - Muon Cooling
 - Acceleration

Arguably the single most critical Technical challenge for the NF & MC

- You will hear about our 3-Pronged Attack
 - Reduce (eliminate) field emission in Vacuum RF, HP gas-filled cavities, Magnetic Insulation for vacuum RF

Muon Ionization Cooling Experiment (MICE)

- First muons observed
- You will get an update on the status of the experiment

Design Studies

A great deal of work has been done on the High, Medium and Low **Emmittance** Options for the MC You will get summary of the recent MCD WS and learn about · Cooling Acceleration Ring and IR Detector design

considerations

Alan Bross

The 5 Year Plan The Proposal Has now been submitted to DOE

• A joint US: NFMCC-MCTF Plan

- A measured program based on the solid muon accelerator R&D achievements of the last decade
- Sufficiently ambitious to make substantial progress before the next round of long-term decisions by the particle physics community
- Includes accelerator, physics & detector studies (only accelerator part in this talk – we also have plans & estimates for physics & detector studies)
- Meets our existing commitments (NF-RDR, MICE) and in addition will deliver:
 - MC performance requirements based on physics
 - A first end-to-end MC simulation
 - Critical component development & proof-of-principle experiments
 - A first MC cost estimate

Elements of the MC R&D Plan

Alan Bross

From Here to There

• With the Continuing Resolution, it has, so far, been a tight year, but there is reason for some optimism

- End to CR
- Supplemental funding
- The submission of our 5 Year Plan Proposal to the DOE is the first step towards an expanded and much broader US effort on NF and MC R&D
- The Muon Acceleration Program will be represented at the DOE budget retreat in March
- Hope for a formal review of the 5 Year Plan proposal this FY

