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Motivation & Goals
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The annual Muon Collider Design Workshop (previously hosted at BNL) is aimed
at bringing together all the groups working on various designs for Muon
Colliders. The goal is to review and assess the current state of the concepts,
simulation work and experiments. We shall examine practical limits on the
performance of required technologies in attempt to focus future efforts towards a
baseline collider scenario. The workshops will cover topics such as:

Proton drivers

Muon cooling and demonstration experiments

Bunch recombination

Muon acceleration schemes

Collider Ring and Interaction region design

Site boundary radiation

Detector concepts for energy frontier
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COLLIDER SCENARIOS

PROTON DRIVER & RF

COOLING SIMULATIONS

FINAL COOLING

ACCELERATION

INTERACTION REGION

EXPERIMENTS & PLANS

SUMMARIES

Thomas Jefferson National Accelerator Facility

Alex Bogacz NFMCC Collaboration Meeting, LBNL, January 27, 2009
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Participants
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Muon Collider Design Workshop

Jefferson Lab
. December 8-12, 2008
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LEMC Scenario
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Rol Johnson

4 km ILC linac
103 GeV/pass

30 GeV Coalescing ring

1L~ cool/accel ut coolfaccel
C 30 GeV RLA )
— —p»| 1Lt cap/cool

L~ cap/cool Target

&\ 8 GeV proton accumulator

and buncher rings

oeur ad-H

S— 4Eff;20n Lab s Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy Alex Bogacz



N0
e&(\n Sz,

Medium Emittance scheme of 2007 TE\;(
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Yuri Alexahin
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Bob Palmer found a number of weak points with this scheme:

® bunch length grows >1m during REMEX in 50T solenoids = bunch frequency of 200MHz
can not be sustained = merging should be done before REMEX with all the losses due to
merging and recooling;

e “super-Fernow” (aka bucked coil) lattice has poor transmission (<50%) making the overall
survival a dismal 4% (if Guggenheims are used for 6D cooling).

Still | think that the idea is not hopeless, though modifications are necessary
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Parameters of Different MC options ;r}l'z

X
bon coW”

Low Emit. High Emit. MCTFO7 MCTFO08

Vs (TeV) 1.5

Av. Luminosity (1034/cm?/s) * 2.7 1 1.33-2

Av. Bending field (T) 10 6 6

Mean radius (m) 361.4 500 500 = 495
No. of IPs 4 2 2

Proton Driver Rep Rate (Hz) 65 13 40-60
Beam-beam parameter/IP 0.052 0.087 0.1

B* (cm) 0.5 1 1

Bunch length (cm) 0.5 1 1

No. bunches / beam 10 1 1

No. muons/bunch (10'1) 1 20 11.3

Norm. Trans. Emit. (um) 2.1 25 12.3

Energy spread (%) 1 0.1 0.2

Norm. long. Emit. (m) 0.35 0.07 0.14

Total RF voltage (GV) at 800MHz 407x103q, 0.21** 0.84** = 0.3
Muon survival Nu/Nu0O 0.31 0.07 0.2 ?
u+ in collision / proton 0.047 0.01 0.03 ?

8 GeV proton beam power 3.62*** 3.2 1.9-2.8 ?
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HEMC Scenario
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Collider Parameters

Same as last year included for reference 209 Eeluey
C of m Energy 1.5 4 TeV
Luminosity 1 4 | 10** cm?sec !
Muons/bunch 2 2 10"
Ring circumference 3 8.1 km

Beta at IP = . 10 3 mm

rms momentum spread 0.1 0.12 %
Required depth for v rad| 13 135 m
Repetition Rate 12 6 Hz
Proton Driver power ~4 |~ 1.8 MW
Muon Trans Emittance 25 25 pi mm mrad
Muon Long Emittance |72,000|72,000 | pi mm mrad

e Based on real Collider Ring designs, though both have problems
e Emittance and bunch intensity requirement same for all examples
e Luminosities are comparable to CLIC's

e Depth for i/ radiation keeps off site dose < 1 mrem /year
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HEMC Scenario

1000g Merge to single
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Most Serious Questions

1. Transmission

2. Breakdown in Cooling rf and effect on ##1  Discussed here

3. Separation of charges and effect on #1  Fernow

4. Early 50 T cooling and effect on #1  Next
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Proton Driver

PROTON DRIVER & RF Chair, Bill Weng
1.00-1:40 Froject 0 the Initial Configuration Faul Denwent
1:.40-2:05 Froject X as a Proton Driver Chuck Ankenbrandt
2:05-2:30 Physics Issues of 8-eV AccumulatorfBuncher Ring Valer Lebedey
2A0-255 CWVY Linac Version of Project X [Fart 1 | Fart 2] Faol Johnson
e it LS Coffee Break & Group Photo
St e Owerview of Proton Driver Studies in Lk, Chris Prior
200415 DS Froton Driver to Drive a Muon Collider Scott Berg
4 15-4.40 Fecent BF ldeas Dilktys Stratakis
4:40-5:05 Dielectric Loaded BEF Cavities Milorad Fopovic
15645 VWielcome Reception

S— .4eff220n Lab s Thomas Jefferson National Accelerator Facility
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IDS Proton Driver Specifications T"Q

Scott Berg
o Proton driver power: 4 MW

O Proton driver repetition rate: 50 Hz
O Proton driver energy: around 10 GeV
03 proton bunches In train
a1.7 x 1013 protons per bunch at 10 GeV

oBunch length: 1-3 ns
o Train length at least 200 us

]
BERODKHAVEN
HATIORAL LABGRATORY




Conclusions Scott Berg

O Gap to bridge between NF and MC
O Get a little from everyone

aSgueeze as much current into PD as we can
<~ Easy to say. ..
<~ Multiple-beamline systems? Duplication
aHigher energy PD
aMaximize cooling for more rep rate
<~ Easy to say. ..
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Boundary conditions
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+ Beam current < 40 mA
+ Pulse length <1ms
+ FHepetition rate = 15 Hz
BMS bunch length affer compressed < 60 cm
Beam is focused on the mercury target of 5 mm radius
Rms beam size = 2 mm
Beta-function on the target » target length (~20 cm)
Maximize beam power on the target
More or about 1 MW is desirable

Main beam physics limitations

Censistency of beam parameters through entire chain of the planned
proton accelerators

Beam focusing on the farget

Longitudinal beam stability

Transverse beam stability

Particle loss due To non-linear forces of the beam space charge

Cormprast oy, vele Lafndey, Meon Colide Wirkabop, heseorl Hess, VA, Dee - 13, 3HE 3
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900-9:25
9.25-9:50
950-10:15
10:15-10:45
10:45-11:10
11:10-11:35
11:35-1:00

1:00-1:25
1:25-1:50
1:50-215
2:15-2:40
2:40-3:10
310-3:35
3:35-4.00

4:00-4:25

4:25-4:50
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COOLING SIMULATIONS

Front End Simulations

Cvernview of Cooling Studies in LUk

Guggenheim Simulations
Coffee Break
T 110 Cavity for Emittance Exchange
HCC Simulations with Wedge Absorbers
Lunch - On Your Own

FINAL COOLING

Status of HOC optimization with new BF structure

Lithium Lens for Final Cooling

Lithiurn Lens Simulations

Helical FOFD Snake Simulations
Coffee Break

Epicyclic channels for PIC

Farticle Refrigerator

Inverse Cyclotron Simulations with Gdbeamling and

|CO0L

Inverse Cyclotron Simulations with Space-charge

s g ——

Chair, Rick Fernow
Dawve MNeuffer
Chris Rogers
Favel Snopok

Eob Rimmer

Yaler Balbekoy

Chair, Juan Gallardo
Katsuya Yonehara
David Cline

Kevin Lee

Yun Alexahin

Andrel Afanasey
Tom Roberts

Terry Hart

keevin Faul
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Big View of Muon Cooling....
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Emittances vs. Stage
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Front End Capture/Phase Rotation & Cooling Studies

Dave Neuffer
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Front end simulations
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¢+ Initial beam is 8GeV protons, 1ns bunch length

Dave Neuffer

0.1 0.02
0.09 0.018
0.08 | " "*""‘hﬁ,\ !-",,——"“M 0.016
0.07 0.014
~fir -=— mul/proton _,,l"' s
0.05 - emittance 0.0¢
0.04 \'\ 0.008
0.03 | 006
0.02 // 0.004
0.01 ——— 0.002

0 0
0 25 50 75 100 125 150 175 200 225
Target Drift ¢-E Rotator Cooler
57 m 35m 36 m upto 100 m

S— .gEffEngn Lab s Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy Alex Bogacz




Overview of Cooling Studies in the UK

Chris Rogers

Cooling with Reduced Gradient

" NF cooling channel RF is LT
= 15.25 MV/m @ 200 MHz - —_— {HH&
= Sittingin~2.4 T field Pl S e
* |t looks like this is tough to achieve H“n
= Kilpatrick Limitis at 17 MV/m 5 .;:' 1 ) “1 i
= But2.4T field limits what can really be done J:lu CTT

= Palmer's simulations indicate might only get ~7 MV/m
* Many caveats, esp that FS2A coils sit ona field flip

okfice of

— 4eff920n Lab s Thomas Jefferson National Accelerator Facility ——
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Helical FOFO Snake Simulations ol
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Create rotating B, field by tilting (or displacing) solenoids in rotating planes
x*cos(¢,)+y*sin(¢,)=0, k=1,2,...
Example for 6-cell period:

Yuri Alexahin

Solenoid # 1 2 3 4 5 6
Polarity + - + - + -
Roll angle ¢, 0 27/3 4 7t/3 0 2 /3 4 7t/3
B, 1
: e T e B B

6

3 / \ 5 Channel parameters:
200 MHz pillbox RF 2x36cm, Emax=16MV/m
Solenoids: L=24cm, Rin=60cm, Rout=92cm,

Absorbers: LH2, total width (on-axis)
6x15cm,

Total length of 6-cell period 6.12m

S— .{effezon Lab s Thomas Jefferson National Accelerator Facility
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blue - initial, red - final

z-v0*t
“‘Emittances” (cm) initial final
6D 10.3 0.07 Y =7
Trans. average 1.99 0.29 5[) = ﬂz
Longitudinal 3.75 1.46 0/
2
Why momentum acceptance is so large (>60%) in |2 _ 1+85 ——2 4+
the resonance case? Do P2 73

Nice surprise:

Large 2nd order chromaticity due to
nonlinear field components keeps both
tunes from crossing the integer !

E— Jeffezon Lab s Thomas Jefferson National Accelerator Facility
MCTF Scenario Update - Y. Alexahin 2nd MCD workshop, JLab, December 10 2008
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Study of Ring Coolers for u+ p- Colliders

X
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David Cline

Solenoids

_L * My beam
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Su
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Lithium Lens for Muon Final Cooling

Initial Design of Liquid Li Lens Kevin Lee

Lens assembly w/ current discs and the
primary and secondary coils

LiD=2.54 cm; L =30.0 cm

..!Eff;%()n Lab s Thomas Jefferson National Accelerator Facility
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Progress on Guggenheim RFOFO - Simulations

Multilayer scheme

<
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6D emittance

solenoid

)
< )) 5 150 Ts

-__/ Pavel Snopok Number of turns

S— J}effe_-gon Lab s Thomas Jefferson National Accelerator Facility
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Progress on Design of Helical Cooling Channel
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Traveling wave RF structure in HCC (ll)

Additional coupling ports for backward wave: a handle to reduce the group velocity

Katsuya Yonehara

= S = maenetic counling

Compact dielectric RF for HCC

® Reduce transverse size of RF cell

® Milorad will present this idea more detail

betagroup =0.00023, 4.67 MW, grad. = 12MV/m, W = 4.6 J/cell,
Enhancement = 2.3, f=0.393 GHz

Milorad Popovic
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Epicyclic Helical Solenoid T&

B, =| B, e + | B, | e’

Superimposed transverse
magnetic fields with two spatial
periods

Variable dispersion function

My XY-plane

Andrei Afanasev
k,=-2K,
B,=2B, D
EXAMPLE

S— .{effezon Lab s Thomas Jefferson National Accelerator Facility
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Simulations of Muon Cooling With an Inverse Cyclotron ¢,
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R. Palmer’'s ICOOL model

Terry Hart

y (cm)

G4beamline model

VORPAL 3D Simulations with space-charge
Kevin Paul
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Frictional Cooling ol
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Tom Roberts
< 10m
Solenoid
1,400 thin carbon foils
u- climb the potential, turn (25 nm), separated by
around, and come back out via 0.5 cm and 2.4 kV.
the frictional channel. /
pin — \ r
(3-7 MeV) e 20
cm
M~ Out ¢
(6 keV) )
Gnd / Resistor Divider -5.9 MV
e :
First foil is at -2 MV, so R,
outgoing u~ exit with Solenoid maintains
2 MeV kinetic energy. <«—— transverse focusing.

Device is cylindrically symmetric (except divider); diagram is not to scale.

Remember that 1/e transverse cooling occurs by losing and
re-gaining the particle energy. That occurs every 2 or 3 foils

in the frictional channel.

E— Wo?ﬁpq}a‘b — Thomas Jefferson National Accelerator Facility

Alex Bogacz
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The MANX Proposal o
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DRAFT MANX following MICE at RAL DRAFT

Robert Abrams’, Mohammad Alsharo’a’, Charles Ankenbrandt', Emanuela Barzi?,
Kevin Beard', Alex Bogacz3, Daniel Broemmelsiek?, Yu-Chiu Chao3,
Mary Anne Cummings’, Yaroslav Derbenev3, Henry Frisch#, lvan Gonin?,
Gail Hanson?®, David Hedin?, Martin Hu?,
Rolland Johnson', Stephen Kahn', Daniel Kaplan®,

Vladimir Kashikhin?, Moyses Kuchnir’, Michael Lamm?, Valeri Lebedev?,
David Neuffer?, Milord Popovic?, Robert Rimmer3, Thomas Roberts’, Richard Sah’,
Linda Spentzouris®, Alvin Tollestrup?, Daniele Turrioni?, Victor Yarba?,
Katsuya Yonehara?, Cary Yoshikawa?, Alexander Zlobin?
1Muons, Inc.
2Fermi National Accelerator Laboratory
3Thomas Jefferson National Accelerator Facility
4University of Chicago
SUniversity of California at Riverside
S /llinois Institute of Technology
’Northern lllinois University
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If MANX isn’t a prototype for NF or MC cooling, could it be? }}(’[
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For example, if HPRF can’t be made to work, then you could
match 6d MANX output to ~150 MeV vacuum RF section, (a la Fernow)
accelerate 150 MeV, which would improve 6d emittance by factor of ~5.

Inject into another MANX section, and iterate 9 times to reduce 6d emittance by a factor of
a million in 10X30 = 300 m.

Rol Johnson
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MICE Phases + MANX ity
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2k Aspirational MICE Schedule as of September 2008

Z

el u
_.‘Ilil STEP 1 Febuary-december 2008
MD--I STEP 1 February-April 2009

] _IISTEP II/ITLT  April 2009

e —— to fall 2009

e I Hl e Dgll'm"'y of 1st FC
1 Ll STEPIV e er 2000
run March 2010

STEP V
spring 2010

i “STEP VI
] ——a———n Q4 2010
-24011

CM22 Alain Blondel 20 October ____

MANX in MICE (Conceptual)

|"=—— | B i I —mn
=y [ T
[ —— x| i ——-1

= %
I ———n
/4 ] II Off-Axis MANX
[ ——n

E— 4eff220n Lab s Thomas Jefferson National Accelerator Facility ——
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MANX Objectives

* Measure 6D cooling in a channel Iong e
significant reduction of emlttan

« Study the evolution of the e Iong the
channel by making s inside the
channel as well as b@ d after

* Test the Derb Johnson theory of the HCC

. Advan ooling technology

— 4eff920n Lab s Thomas Jefferson National Accelerator Facility —— O

Operated by JSA for the U.S. Department of Energy Alex Bogacz



Further Cooling Experiments
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Chris Rogers
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Absorber
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Study high pressure hydrogen gas filled RF cell
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Espg = 0.1076 x Pressure + 4.378

§ ] %
| 5T i1l | | f i F ] Iy
| ] [ | | I TESSU 1

80~ » L 4
f’ .ff"
= | Al /s |
£ 60 --31..4....!...}' .......... _ T . 60.68
E / --~-’§w"---0---~-. T TR 54 30 SF6(Ap=10.0] %)
w o -
s 40 7 e
$ .,f' ol | Melting point vs Breakdown field
E 20 {.II’J i Max Stable Gradient as a function of melting temperature for various
=] r electrode materials
F"' #Sepl 06 M2004
{jl. Il 80
0 500 1000 150}
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Gas Pressure [psi]

Mvim

0 500 1000 1500 2000 2500 3000 3500

Tiiais OO A adsi A Melting Temperature, C

Katsuya Yonehara

Thomas Jefferson National Accelerator Facility

Alex Bogacz



9:00-9:25
9:25-9:50
9:50-10:15
10:15-10:45
10:45-11:10
11:10-11:3%
11:35-1:00

1:00-1:23
1:25-1:50
1:50-2:13
2:15-2:45

2:45-3:10
310-3:35

3:40-4:10
4:10-4:40

ACCELERATION

FEAG - Type Multipass Arcs for ELA's
Multi-pass Droplet Arc Desian

High-radient Induction Linacs for Protons and Muons
Coffee Break
Fapid Cycling Synchrotrons

Summary of Recent One-Diay RF VWorkshop

Lunch - O Your Chan
INTERACTION REGION

|_pdate on the 'Dipole first' Muon Collider optics

Studies for a Muon Collider Optics with non-interleayved
sextupole scheme

_onsiderations on Optimized IR Design
_offee Break

Eeam Induced Detector Eackgrounds for a lMuon Collider

Low-beta Redion Muon Collider Detector
EXPERIMENTSS& PLANS

The MANX Proposal

Recent RFE Results from MTA

OUperated by JSA 1or the U.S. Department of Energy T T TeTTT

Chair, Harold Kirk
Dejan Trhojevic
Guimel Wang
YU-Jivan Chen

Llon Summers

Andreas Jansson

Chair, Al Garren

Yun Alexahin
Eliana Gianfelice-\Wendt

Yaroslay Derbeney

steve Kahn

Mary Anne Cummings
Chair, Richard Sah
Bob Abrams

Katsuya Yonehara




Rapid Cycling Synchrotron  pon summers %3

Magnet Steel Lamination Properties ——
Material Composition (%) P (pf2-cm) H. (Oersteds)

Low Carbon Steel Fe, C .0025 10 1.0

3% Silicon Steel Fe 97, Si 3 47 0.7

Grain Oriented Steel Fe 97, 5i 3 47 0.1

JFE Super Core Fe 93.5, 5i 6.5 82 0.2

Metglas 2605A1 Fe 81, B 14, Si 3, C 2 135 03

e Eddy Current Loss = [Volume](27 f Bt)%/(24p)
High p is good. ¢ = lamination thickness.

o Hysteresis Loss = [ H dB. Low coercivity (H.) is good.

e Vendor: TC Metal Company Slitting and Shearing
$3/Ib for slit and sheared .23mm grain oriented silicon steel

e Magnet Measurement: F. W. Bell Model 4048 Hall Probe.
Measure to 2T with an accuracy of 2% from 100 to 3000Hz.

S— .4effergon Lab s Thomas Jefferson National Accelerator Facility
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Prototype Arc design NS-FFAG 1%

NS-FFAG (Non-Scaling Fixed Field Alternating Gradient Hon cone®

» ‘Racetrack’ RLA to accommodate large momentum range (~60%)

8=-0024 rad 8=-0024 g9

dp/p=+33%

dpfp=t18% P

dp/p=0

dp/p=-18%

T

LEWH]

dp/p=--33
BL=15m

Dejan Trbojevic

1. Large energy acceptance

2. Very small orbit offsets | | |
Basic cell structure in ARC (combined

3. Reduce number of arcs function magnet with extremely strong
4. Very compact structure focusing )
Reference: Flexible Momentum Compaction Return Arcs for RLAS,

;) D. Trbojevic, R.P. Johnson, EPAC, 2578-2580 e ot uciearrn,
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NS-FFAG multi-pass ‘Droplet’ Arc oty
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IR Optics
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“Dipole first” Yuri Alexahin modified Oide
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Nonlinear Detuning and Dynamic Aperture g}('(
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“Dipole first” Eliana Gianfelice

Normalized anharmonicities:
dQl/dEl = 0.25242152E+08
dQl/dE2 = 0.19616977E+08
do2/dE2 = 0.18515914E+08
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modified Oide

Tune Dependence

on Amplitude (no octupoles)
(MAD8 STATIC)

dQ,/dE; | 0.50x 10®
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Status of the Collider-IR design oty

Yuri Alexahin
With the present level of understanding it seems possible:
¢ p*=1cm
¢a, ~10°-104
¢ momentum acceptance ¥1%
¢ Dynamic aperture ~ 5c for €, = 25 um (HE option)
¢ Circumference ~ 3km

(all at the same time)

To proceed further to a realistic design a close collaboration
between lattice designers and detector, energy deposition and
magnet technology groups is a must.
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Muon Collider Detector Revision Je

Prepare G4Beamline to simulate beam-induced backgrounds in
sensor arrays of a large detector in the low-beta region of a muon
collider.

Verify the simulations by comparing distributions and rates to other
codes, such as MARS, and to analytic calculations.

Consolidate existing NIU and other photon sensor performance data
and extend them as needed with new measurements.

Compare the apparent requirements from the preliminary G4beamline
simulations for at least one muon collider scenario with the
performance data to identify inconsistencies or areas where
improvement is needed in the devices, electronics, IP design, or

machine parameters.
Mary-Anne Cummings

o
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Proton Driver & RF, Acceleration — Discussion TE\((

How to transform Project X into a Proton Driver?
Should linac be CW or pulsed?

How many IR’s?

How promising are new Induction Accel. ideas?
MANX, MICE, & the 5-year plan

Will MC be low, med, or high emittance?

What were the highlights of this workshop?

Questions about particular talks
Chuck Ankenbrandt
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