

Muon Collider Design Workshop - Summary

Alex Bogacz

Sponsorship support provided by Muons, Inc.

Thomas Jefferson National Accelerator Facility

The annual Muon Collider Design Workshop (previously hosted at BNL) is aimed at bringing together all the groups working on various designs for Muon Colliders. The goal is to **review and assess the current state of the concepts**, **simulation work and experiments**. We shall examine practical limits on the performance of required technologies in attempt to focus future efforts towards a baseline collider scenario. The workshops will cover topics such as:

- Proton drivers
- Muon cooling and demonstration experiments
- Bunch recombination
- Muon acceleration schemes
- Collider Ring and Interaction region design
- Site boundary radiation
- Detector concepts for energy frontier

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

NFMCC Collaboration Meeting, LBNL, January 27, 2009

Program - Sessions

- COLLIDER SCENARIOS
- PROTON DRIVER & RF
- COOLING SIMULATIONS
- FINAL COOLING
- ACCELERATION
- INTERACTION REGION
- EXPERIMENTS & PLANS
- SUMMARIES

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

NFMCC Collaboration Meeting, LBNL, January 27, 2009

Participants

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

NFMCC Collaboration Meeting, LBNL, January 27, 2009

LEMC Scenario

Operated by JSA for the U.S. Department of Energy

Medium Emittance scheme of 2007

Bob Palmer found a number of weak points with this scheme:

- bunch length grows >1m during REMEX in 50T solenoids ⇒ bunch frequency of 200MHz can not be sustained ⇒ merging should be done before REMEX with all the losses due to merging and recooling;
- "super-Fernow" (aka bucked coil) lattice has poor transmission (<50%) making the overall survival a dismal 4% (if Guggenheims are used for 6D cooling).

Still I think that the idea is not hopeless, though modifications are necessary

Thomas Jefferson National Accelerator Facility

	Low Emit.	High Emit.	MCTF07	MCTF08
√s (TeV)		1.5		
Av. Luminosity (10 ³⁴ /cm ² /s) *	2.7	1	1.33-2	
Av. Bending field (T)	10	6	6	
Mean radius (m)	361.4	500	$500 \Rightarrow$	495
No. of IPs	4	2	2	
Proton Driver Rep Rate (Hz)	65	13	40-60	
Beam-beam parameter/IP	0.052	0.087	0.1	
β* (cm)	0.5	1	1	
Bunch length (cm)	0.5	1	1	
No. bunches / beam	10	1	1	
No. muons/bunch (10 ¹¹)	1	20	11.3	
Norm. Trans. Emit. (μm)	2.1	25	12.3	
Energy spread (%)	1	0.1	0.2	
Norm. long. Emit. (m)	0.35	0.07	0.14	
Total RF voltage (GV) at 800MHz	$407 \times 10^{3} \alpha_{c}$	0.21**	0.84** ⇒	0.3†
Muon survival Νμ/Νμ0	0.31	0.07	0.2	?
μ + in collision / proton	0.047	0.01	0.03	?
8 GeV proton beam power	3.62***	3.2	1.9-2.8	?

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

HEMC Scenario

Collider Parameters

Same as last year included for reference

C of m Energy	1.5	4	TeV
Luminosity	1	4	$10^{34}~\mathrm{cm}^2\mathrm{sec}^{-1}$
Muons/bunch	2	2	10^{12}
Ring circumference	3	8.1	km
Beta at IP $= \sigma_z$	10	3	mm
rms momentum spread	0.1	0.12	%
Required depth for $ u$ rad	13	135	m
Repetition Rate	12	6	Hz
Proton Driver power	\approx 4	pprox 1.8	MW
Muon Trans Emittance	25	25	pi mm mrad
Muon Long Emittance	72,000	72,000	pi mm mrad

- Based on real Collider Ring designs, though both have problems
- Emittance and bunch intensity requirement same for all examples
- Luminosities are comparable to CLIC's
- ullet Depth for u radiation keeps off site dose < 1 mrem/year

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Bob Palmer

Operated by JSA for the U.S. Department of Energy

HEMC Scenario

Most Serious Questions

- 1. Transmission
- 2. Breakdown in Cooling rf and effect on #1 Discussed here
- 3. Separation of charges and effect on #1 Fernow
- 4. Early 50 T cooling and effect on #1 Next

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Proton Driver

	PROTON DRIVER & RF	Chair, Bill Weng
1:00-1:40	Project X: the Initial Configuration	Paul Derwent
1:40-2:05	Project X as a Proton Driver	Chuck Ankenbrandt
2:05-2:30	Physics Issues of 8-GeV Accumulator/Buncher Ring	Valeri Lebedev
2:30-2:55	CW Linac Version of Project X [Part 1 Part 2]	Rol Johnson
2:55-3:25	Coffee Break & Group Photo	
3:25-3:50	Overview of Proton Driver Studies in UK	Chris Prior
3:50-4:15	IDS Proton Driver to Drive a Muon Collider	Scott Berg
4:15-4:40	Recent RF Ideas	Diktys Stratakis
4:40-5:05	Dielectric Loaded RF Cavities	Milorad Popovic
5:15-6:45	Welcome Reception	

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

IDS Proton Driver Specifications

Scott Berg

- Proton driver power: 4 MW
- Proton driver repetition rate: 50 Hz
- ○Proton driver energy: around 10 GeV
- \circ 3 proton bunches in train $\Box 1.7 \times 10^{13}$ protons per bunch at 10 GeV
- ○Bunch length: 1–3 ns
- \circ Train length at least 200 μ s

Conclusions

Scott Berg

- ○Gap to bridge between NF and MC
- Get a little from everyone
 - Squeeze as much current into PD as we can
 - ♦ Easy to say...
 - ♦ Multiple-beamline systems? Duplication □ Higher energy PD
 - Maximize cooling for more rep rate
 - ♦ Easy to say...

Boundary conditions

Linac

- Beam current ≤ 40 mA
- Pulse length ≤1 ms
- Repetition rate = 15 Hz
- RMS bunch length after compressed < 60 cm</p>
- Beam is focused on the mercury target of 5 mm radius
- Rms beam size = 2 mm
- Beta-function on the target ≥ target length (~20 cm)
- Maximize beam power on the target More or about 1 MW is desirable

Main beam physics limitations

- Consistency of beam parameters through entire chain of the planned proton accelerators
- Beam focusing on the target
- Longitudinal beam stability
- Transverse beam stability

Particle loss due to non-linear forces of the beam space charge Compressor ring, Valuti Lebedev, Muon Collider Workshop, Newport News, VA, Dec. 8 – 12, 2008

Valeri Lebedev

3

Jefferson Lab

Operated by JSA for the U.S. Department of Energy

	COOLING SIMULATIONS	Chair, Rick Fernow
9:00-9:25	Front End Simulations	Dave Neuffer
9:25-9:50	Overview of Cooling Studies in UK	Chris Rogers
9:50-10:15	Guggenheim Simulations	Pavel Snopok
10:15-10:45	Coffee Break	
10:45-11:10	TM110 Cavity for Emittance Exchange	Bob Rimmer
11:10-11:35	HCC Simulations with Wedge Absorbers	Valeri Balbekov
11:35-1:00	Lunch - On Your Own	
	FINAL COOLING	Chair, Juan Gallardo
1:00-1:25	Status of HCC optimization with new RF structure	Katsuya Yonehara
1:25-1:50	Lithium Lens for Final Cooling	David Cline
1:50-2:15	Lithium Lens Simulations	Kevin Lee
2:15-2:40	Helical FOFO Snake Simulations	Yuri Alexahin
2:40-3:10	Coffee Break	
3:10-3:35	Epicyclic channels for PIC	Andrei Afanasev
3:35-4:00	Particle Refrigerator	Tom Roberts
4:00-4:25	Inverse Cyclotron Simulations with G4beamline and ICOOL	Terry Hart
4:25-4:50	Inverse Cyclotron Simulations with Space-charge	Kevin Paul

Operated by JSA for the U.S. Department of Energy

Big View of Muon Cooling....

Front End Capture/Phase Rotation & Cooling Studies

Front end simulations

0.1 0.02 0.09 0.018 0.08 0.016 0.07 0.014 - mu/proton 0.06 0.012 - emittance 0.05 0.01 0.04 0.008 0.03 0.006 0.02 0.004 0.01 0.002 0 0 25 50 75 100 125 150 175 200 0 225 **b**-E Rotator Target Buncher Drift Cooler up to 100 m 57 m 31.5 m 36 m office of Nuclear Ph Jefferson Lab **Thomas Jefferson National Accelerator Facility**

Initial beam is 8GeV protons, 1ns bunch length

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Dave Neuffer

Overview of Cooling Studies in the UK

Chris Rogers

Cooling with Reduced Gradient

- NF cooling channel RF is
 - 15.25 MV/m @ 200 MHz
 - Sitting in ~2.4 T field

It looks like this is tough to achieve

- Kilpatrick Limit is at 17 MV/m
- But 2.4T field limits what can really be done
- Palmer's simulations indicate might only get ~7 MV/m
 - Many caveats, esp that FS2A coils sit on a field flip

Jeffe

Thomas Jefferson National Accelerator Facility

Helical FOFO Snake Simulations

Operated by JSA for the U.S. Department of Energy

Phase space distributions

"Emittances" (cm)	initial	final
6D	10.3	0.07
Trans. average	1.99	0.29
Longitudinal	3.75	1.46

Why momentum acceptance is so large (>60%) in the resonance case?

Nice surprise:

Large 2nd order chromaticity due to nonlinear field components keeps both tunes from crossing the integer !

Thomas Jefferson National Accelerator Facility

2nd MCD workshop, JLab, December 10, 2008

Study of Ring Coolers for μ + μ - Colliders

Operated by JSA for the U.S. Department of Energy

Lithium Lens for Muon Final Cooling

Initial Design of Liquid Li Lens

Kevin Lee

Lens assembly w/ current discs and the primary and secondary coils

Li D = 2.54 cm; L = 30.0 cm

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Progress on Guggenheim RFOFO - Simulations

Operated by JSA for the U.S. Department of Energy

Progress on Design of Helical Cooling Channel

Traveling wave RF structure in HCC (II)

Additional coupling ports for backward wave: a handle to reduce the group velocity

betagroup =0.00023 , 4.67 MW, grad. = 12MV/m, W = 4.6 J/cell, Enhancement = 2.3, f= 0.393 GHz

Katsuya Yonehara

Compact dielectric RF for HCC

- Reduce transverse size of RF cell
- Milorad will present this idea more detail

Milorad Popovic

Thomas Jefferson National Accelerator Facility

Epicyclic Helical Solenoid

Operated by JSA for the U.S. Department of Energy

Simulations of Muon Cooling With an Inverse Cyclotron

R. Palmer's ICOOL model

G4beamline model

VORPAL 3D Simulations with space-charge

Kevin Paul

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Frictional Cooling

Tom Roberts

Remember that 1/e transverse cooling occurs by losing and re-gaining the particle energy. That occurs every 2 or 3 foils in the frictional channel.

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

DeffersomEab

The MANX Proposal

DRAFT MANX following MICE at RAL DRAFT

Robert Abrams¹, Mohammad Alsharo'a¹, Charles Ankenbrandt¹, Emanuela Barzi², Kevin Beard¹, Alex Bogacz³, Daniel Broemmelsiek², Yu-Chiu Chao³, Mary Anne Cummings¹, Yaroslav Derbenev³, Henry Frisch⁴, Ivan Gonin², Gail Hanson⁵, David Hedin⁷, Martin Hu², Rolland Johnson¹, Stephen Kahn¹, Daniel Kaplan⁶, Vladimir Kashikhin², Moyses Kuchnir¹, Michael Lamm², Valeri Lebedev², David Neuffer², Milord Popovic², Robert Rimmer³, Thomas Roberts¹, Richard Sah¹, Linda Spentzouris⁶, Alvin Tollestrup², Daniele Turrioni², Victor Yarba², Katsuya Yonehara², Cary Yoshikawa², Alexander Zlobin²

²Fermi National Accelerator Laboratory
 ³Thomas Jefferson National Accelerator Facility

 ⁴University of Chicago
 ⁵University of California at Riverside
 ⁶Illinois Institute of Technology
 ⁷Northern Illinois University

Thomas Jefferson National Accelerator Facility

If MANX isn't a prototype for NF or MC cooling, could it be?

- For example, if HPRF can't be made to work, then you could
- match 6d MANX output to ~150 MeV vacuum RF section, (a la Fernow)
- accelerate 150 MeV, which would improve 6d emittance by factor of ~5.
- Inject into another MANX section, and iterate 9 times to reduce 6d emittance by a factor of a million in 10X30 = 300 m.

Rol Johnson

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

MICE Phases + MANX

Operated by JSA for the U.S. Department of Energy

MANX Objectives

- Measure 6D cooling in a channel long enough for significant reduction of emittance
- Study the evolution of the emittance along the channel by making measurements inside the channel as well as before and after
- Test the Derbenev-Johnson theory of the HCC
- Advance muon cooling technology

Thomas Jefferson National Accelerator Facility

Further Cooling Experiments

Chris Rogers

Operated by JSA for the U.S. Department of Energy

Study high pressure hydrogen gas filled RF cell

Operated by JSA for the U.S. Department of Energy

	ACCELERATION	Chair, Harold Kirk
9:00-9:25	FFAG - Type Multipass Arcs for RLA's	Dejan Trbojevic
9:25-9:50	Multi-pass Droplet Arc Design	Guimei Wang
9:50 - 10: 15	High-Gradient Induction Linacs for Protons and Muons	Yu-Jiuan Chen
10:15-10:45	Coffee Break	
10:45-11:10	Rapid Cycling Synchrotrons	Don Summers
11:10-11:35	Summary of Recent One-Day RF Workshop	Andreas Jansson
11:35-1:00	Lunch - On Your Own	
	INTERACTION REGION	Chair, Al Garren
1:00-1:25	Update on the 'Dipole first' Muon Collider optics	Yuri Alexahin
1:25-1:50	Studies for a Muon Collider Optics with non-interleaved sextupole scheme	Eliana Gianfelice-Wendt
1:50-2:15	Considerations on Optimized IR Design	Yaroslav Derbenev
2:15-2:45	Coffee Break	
2:45-3:10	Beam Induced Detector Backgrounds for a Muon Collider	Steve Kahn
3:10-3:35	Low-beta Region Muon Collider Detector	Mary Anne Cummings
	EXPERIMENTS& PLANS	Chair, Richard Sah
3:40-4:10	The MANX Proposal	Bob Abrams
4:10-4:40	Recent RF Results from MTA	Katsuya Yonehara

Operated by JSA for the U.S. Department of Energy

Rapid Cycling Synchrotron

Don Summers

Magnet Steel Lamination Properties

Material	Composition (%)	$ ho \left(\mu \Omega ext{-cm} ight)$	H_c (Oersteds)
Low Carbon Steel	Fe, C .0025	10	1.0
3% Silicon Steel	Fe 97, Si 3	47	0.7
Grain Oriented Steel	Fe 97, Si 3	47	0.1
JFE Super Core	Fe 93.5, Si 6.5	82	0.2
Metglas 2605A1	Fe 81, B 14, Si 3, C 2	135	.03

- Eddy Current Loss = [Volume] $(2\pi f B t)^2/(24\rho)$ High ρ is good. t = lamination thickness.
- Hysteresis Loss = $\int H dB$. Low coercivity (H_c) is good.
- Vendor: TC Metal Company Slitting and Shearing \$3/Ib for slit and sheared .23mm grain oriented silicon steel
- Magnet Measurement: F. W. Bell Model 4048 Hall Probe. Measure to 2T with an accuracy of 2% from 100 to 3000Hz.

Jefferson Lab -

Thomas Jefferson National Accelerator Facility

Prototype Arc design NS-FFAG

NS-FFAG (Non-Scaling Fixed Field Alternating Gradient)

'Racetrack' RLA to accommodate large momentum range (~60%)

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

MCDW 2008, JLAB, Dec 8-12, 2008

NS-FFAG multi-pass 'Droplet' Arc

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

MCDW 2008, JLAB, Dec 8-12, 2008

IR Optics

Operated by JSA for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

Nonlinear Detuning and Dynamic Aperture

Operated by JSA for the U.S. Department of Energy

Status of the Collider-IR design

Yuri Alexahin

With the present level of understanding it seems possible:

- ♦ α_c ~ 10⁻⁵ − 10⁻⁴
- momentum acceptance ±1%
- Dynamic aperture ~ 5 σ for $\epsilon_{\perp N}$ = 25 μ m (HE option)
- Circumference ~ 3km

(all at the same time)

To proceed further to a realistic design a close collaboration between lattice designers and detector, energy deposition and magnet technology groups is a must.

Thomas Jefferson National Accelerator Facility

- Prepare G4Beamline to simulate beam-induced backgrounds in sensor arrays of a large detector in the low-beta region of a muon collider.
- Verify the simulations by comparing distributions and rates to other codes, such as MARS, and to analytic calculations.
- Consolidate existing NIU and other photon sensor performance data and extend them as needed with new measurements.
- Compare the apparent requirements from the preliminary G4beamline simulations for at least one muon collider scenario with the performance data to identify inconsistencies or areas where improvement is needed in the devices, electronics, IP design, or machine parameters.

Thomas Jefferson National Accelerator Facility

Proton Driver & RF, Acceleration – Discussion

- How to transform Project X into a Proton Driver?
- Should linac be CW or pulsed?
- How many IR's?
- How promising are new Induction Accel. ideas?
- MANX, MICE, & the 5-year plan
- Will MC be low, med, or high emittance?
- What were the highlights of this workshop?
- Questions about particular talks

Chuck Ankenbrandt

Thomas Jefferson National Accelerator Facility

