Update on the MCTF Scenario(s)

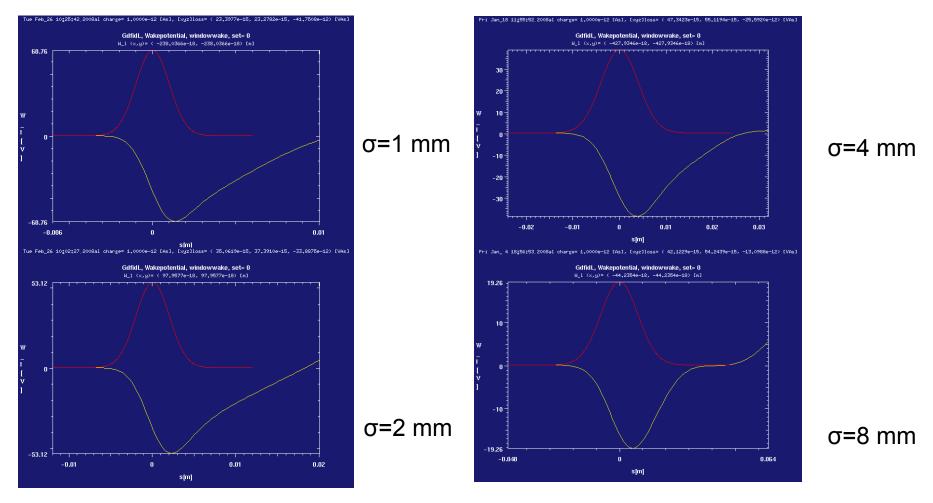
Y.Alexahin (FNAL)

NFMCC meeting, Fermilab

Parameters of Different MC options

√s (TeV)	Low Emit.	High Emit. 1.5	MCTF07
Av. Luminosity (10 ³⁴ /cm ² /s) *	2.7	1	1.33-2
Av. Bending field (T)	10	6	6
Mean radius (m)	361.4	500	500
No. of IPs	4	2	2
Proton Driver Rep Rate (Hz)	65	13	40-60
Beam-beam parameter/IP	0.052	0.087	0.1
β* (cm)	0.5	1	1
Bunch length (cm)	0.5	1	1
No. bunches / beam	10	1	1
No. muons/bunch (10 ¹¹)	1	20	11.3
Norm. Trans. Emit. (µm)	2.1	25	12.3
Energy spread (%)	1	0.1	0.2
Norm. long. Emit. (m)	0.35	0.07	0.14
Total RF voltage (GV) at 800MHz	$407 \times 10^{3} \alpha_{c}$	0.21**	0.84**
Muon survival Νμ/Νμ0	0.31	0.07	0.2
μ + in collision / proton	0.047	0.01	0.03
8 GeV proton beam power	3.62***	3.2	1.9-2.8

*) Luminosity calculated taking account of the hour-glass factor but ignoring the dynamic beta effect.


**) Momentum compaction in the present ring design $\alpha_c = 1.5 \times 10^{-4}$. Note that it would be better to assume f=1.3GHz to keep the RF voltage at a reasonable level (0.52GV for MCTF07 set)

***) Assumes μ /p ratio of 0.15 after capture and precooling, and only decay losses afterwards. Positive and negative muons are assumed to be produced independently (from different protons).

Beam loading in the RF structure.

1. Short range longitudinal wake per unit length:

 $W_{max} \sim q/(\lambda \sigma)$ for a "long" bunch ($\lambda \sigma > a^2$, *a* - aperture).

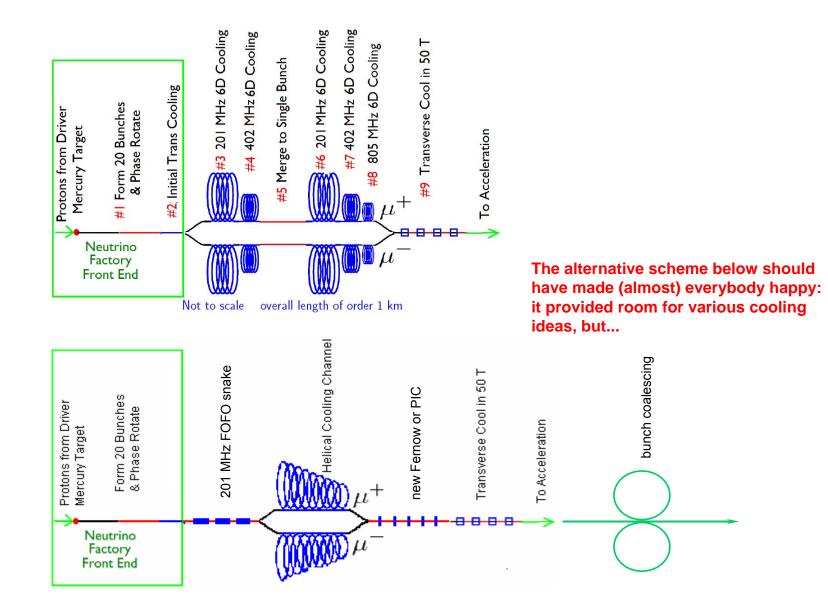
For N=2e12, f=1.3 GHz (ILC-like structure) and σ =8 mm W_{max}= 6.2 MV/m!

Ongoing effort

Make High Emittance option more attractive:

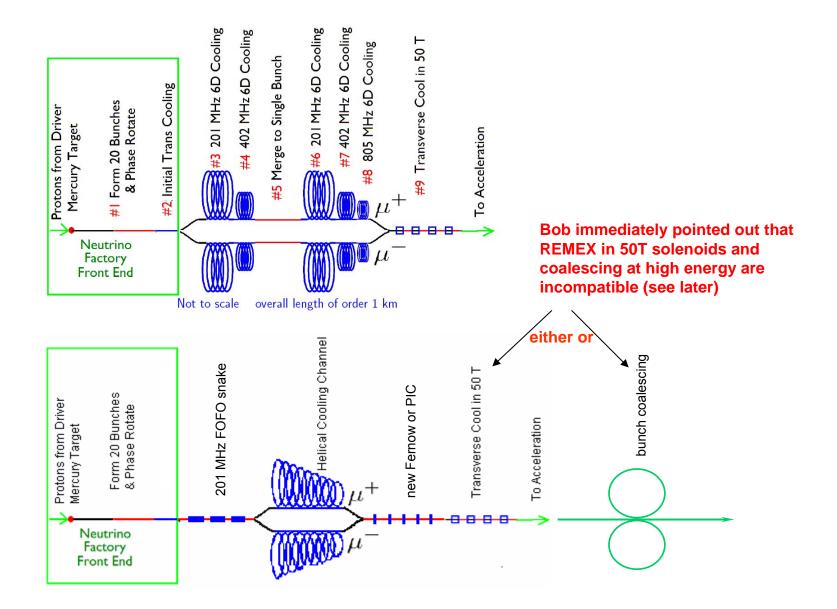
- magnetically insulated open cell RF for cooling channel
- high power p-driver (Project-X linac + MI + coalescing ring, recirculating ILA)
- Dielectric Wall Accelerator for strong $\boldsymbol{\mu}$ bunches

Reduce emittance to that of MCTF scenario and improve transmission:


- faster 6D cooling by using HCC and/or FOFO snake
- avoid bunch merging at low energy (make it at 20-30GeV)
- additional cooling using Fernow lattice or PIC (may become possible due to later bunch merging and lower total intensity)

- increase reprate to compensate for reduction in peak luminosity (Chuck's 8GeV p-driver scheme)

Note: Why cooling in HCC is faster?


- HP RF: Emax >50 MV/m @ 800MHz (is there frequency dependence?)
- homogeneous optics \rightarrow large DA \rightarrow low p=100MeV/c (not demonstrated yet)
- continuous RF (may be unrealizable)

Cooling Schemes in HE and MCTF Scenarios


MCTF Scenario - Y. Alexahin

Cooling Schemes in HE and MCTF Scenarios

MCTF Scenario - Y. Alexahin

FOFO Snake

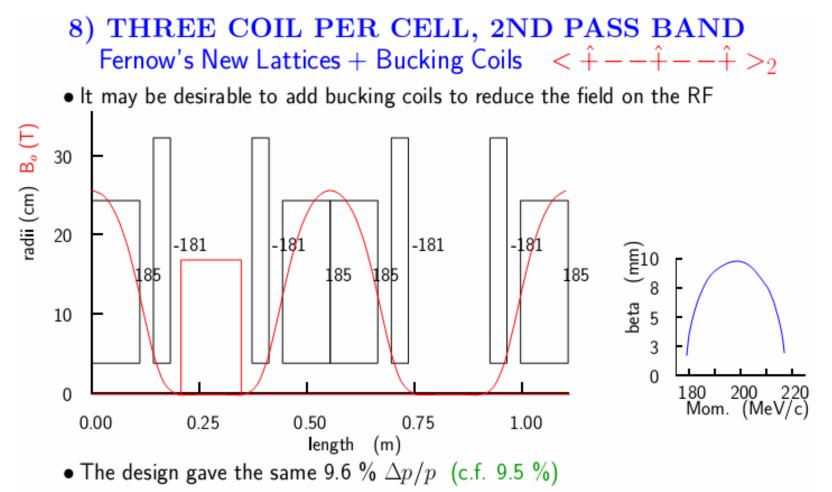
800MHz p=100MeV/c case :

Cooling by GH_2 (19% of LH_2) + LiH wedges Bmax= 9.5T \rightarrow tunes >1 $\rightarrow \alpha_c > 0$ Solenoid tilt ± 65 mrad \rightarrow Dmax ~ 6 cm Emax= 50MV/m

 $Q_{I,II,III}$ =1.42+0.005i, 1.51+0.005i, 0.19+0.004i - emittance damping length ~13m Equilibrium ε₁~0.8mm, ε_{II}~0.4mm

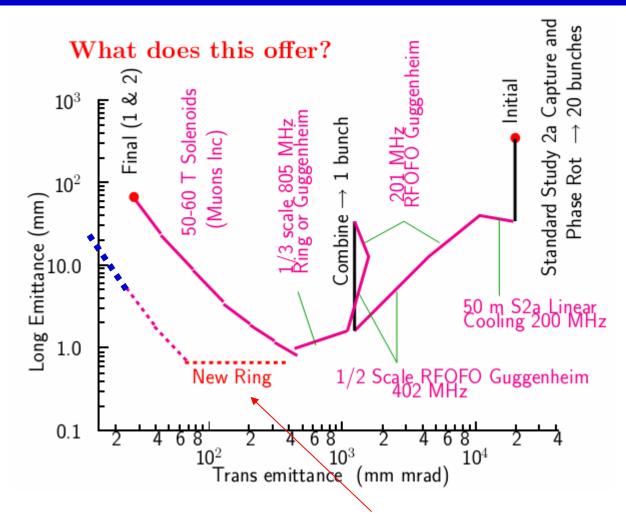
Things to do:

- Check with ICOOL or G4BL
- 200MHz p=215MeV/c design for initial cooling. Estimated performance:


 $\epsilon_{\!\scriptscriptstyle \perp},\,\epsilon_{\!\scriptscriptstyle \parallel}\,\text{-}\,2\text{cm}\rightarrow5\text{mm}$ in 140m (10% decay loss)

• Tilt 2nd and 4th solenoids horizontally (and displace all solenoids from axis) to make a helix.

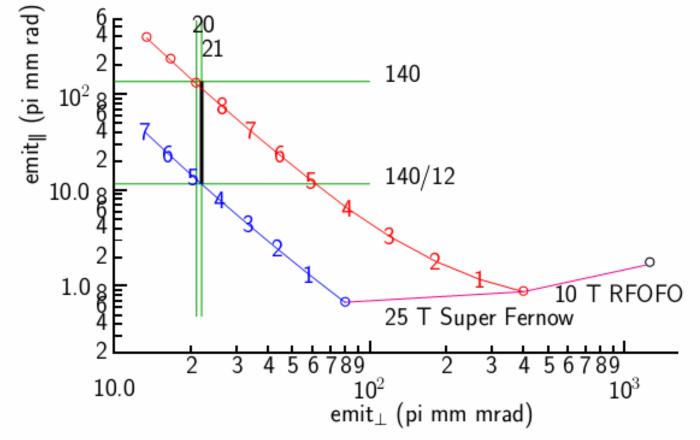
Hopefully α_c will become large enough to discard LiH wedges \rightarrow smaller emittances


NFMCC meeting, FNAL, March 20, 2008

MCTF Scenario - Y. Alexahin

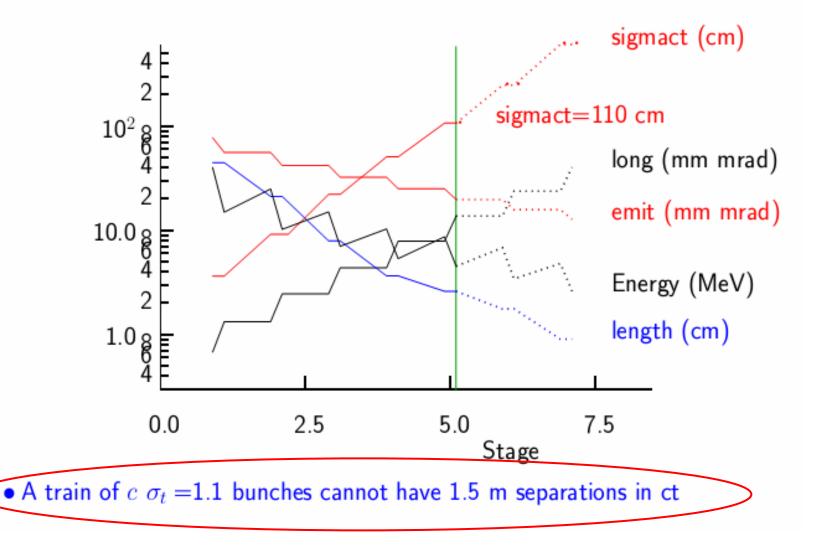
- With the same current densities ($< 200 \text{ A/mm}^2$)
- And, surprisingly, a lower $\beta = 10 \text{ mm} (\text{c.f. } 12 \text{ mm})$
- With no field between coils, reversals can be introduced, or left out, without disturbing transverse dynamics

Possible Benefit from R. Fernow's Lattice

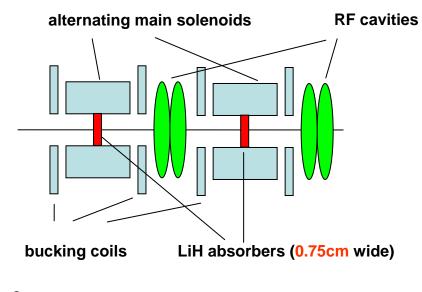

According to Bob, he abandoned the idea of the New Ring employing one of Rick's lattices due to strong Space Charge effects. Will a 10-fold reduction in intensity help?

Starting with much lower transverse emittance, will it be possible to cool it down to ~10 μm without excessive longitudinal blowup in 50T solenoids?

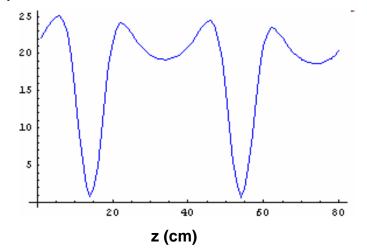
MCTF Scenario - Y. Alexahin


Merging after acceleration (Yuri's proposal)

 assume longitudinal emittance 140 pi mm (vs 70 pi mm) 0.2 % dp/p (vs 0.1%)


 Super Fernow plus merge after acceleration & Conventional merge and re-cool give same final emittance

And merge after acceleration does not work because of bunch length at end of 50 T



Analytical Study of R. Fernow's Lattice with SC

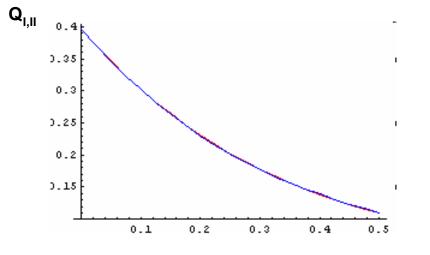
Bob showed that emittances ϵ_{1N} ~10 μ m are feasible, is the space charge really an obstacle?

β⊥ (cm)

Bmax=17T with p=100MeV/c,

Emax=40MV/m @ 800 MHz

Q⊥=1.4+0.0044i, QL=0.135- 0.004i,

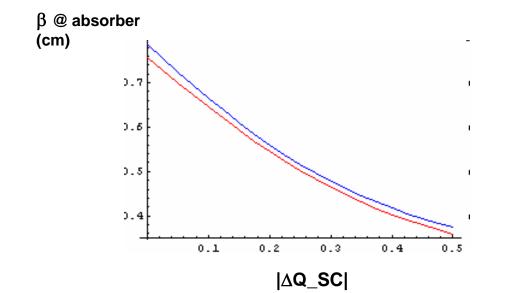

 \rightarrow 5.4% transverse emittance reduction per cell (0.8m)

 $\beta \perp$ (min) = 0.76cm \rightarrow

 $\varepsilon \perp N = 44 \mu m$ (equilibrium)

MCTF Scenario - Y. Alexahin

Analytical Study of R. Fernow's Lattice with SC



|∆Q_SC| (linear SC parameter)

The range of linear stability is amazingly large, for cited emittances it corresponds to

Nmu=2.5e12

It looks like the lattice can accept the full intensity bunch of the high-emittance option!

The "dynamic beta" effect – well known in collider theory – facilitates the cooling!

Can it be employed to obtain smaller emittances?

MCTF Scenario - Y. Alexahin

Original R.Palmer's idea:

```
201/402 MHz 6D cooling \rightarrow bunch merging \rightarrow 201/402/804 MHz 6D cooling \rightarrow 804 MHz Fernow \rightarrow REMEX in 50T solenoids \rightarrow acceleration
```

with **REMEX** in Fernow's lattice:

201/402/804/1608 MHz 6D cooling \rightarrow Fernow 6D cooling \rightarrow REMEX in 1608 MHz Fernow \rightarrow acceleration \rightarrow bunch merging @ 30GeV

Parameters of 1.6 GHz Fernow REMEX channel: p=50MeV/c, L=0.2m, Bmax=34T \rightarrow equilibrium $\epsilon \perp N < 10 \mu m$