

Fermilab's Muon Collider Task Force: Status and Plans

Vladimir Shiltsev

Fermilab

Muon Colider Task Force

- Charge from FNAL Director P.Oddone (July 2006):
 - "...the Muon Collider represents a possible long term path for extending the energy frontier in lepton collisions beyond 1 TeV.
 - "...Task Force to develop a plan for an advanced R&D program aimed at the technologies required to support the long term prospects of a Muon Collider."
 - requested for September 2006: A report outlining a plan for developing the Muon Collider concept based on recent ideas in the realm of ionization cooling
 - ➤ Initial proposal delivered Sep.2006
 - "...to initiate the Muon Collider study, including the associated cooling channel study and development program, in 2007."
 - > 2007 report and R&D plan in FNAL-TM-2399, Dec'07

Muon Colider Task Force

FERMILAB-TM-2399-APC

10-Jan-08

MUON COLLIDER TASK FORCE REPORT

C.Ankenbrandt, Y.Alexahin, V.Balbekov, E.Barzi, C.Bhat, D.Brommelsiek, A.Bross, A.Burov, A.Drozhdin, D.Finley, S.Geer, N.Gelfand, E.Gianfelice-Wendt, M.Hu, A.Jansson, C.Johnstone, J.Johnstone, Vl.Kashikhin, V.Kashikhin, M.Lamm, V.Lebedev, N.Mokhov, C.Moore, A.Moretti, D.Neuffer, K.-Y.Ng, M.Popovic, I.Rakhno, V.Shiltsev, P.Spentsouris, A.Striganov, A.Tollestrup, A.Valishev, A.Van Ginneken, K.Yonehara, C.Yoshikawa, A. Zlobin

J.Norem ANL

J.S.Berg, J.C.Gallardo, R.Gupta, H.Kirk, R.Palmer, R.Fernow, P.Wanderer BNL

> A.Bogacz, Y.-C.Chao, Y.Derbenev, R.A.Rimmer JIAB

G.Sabbi, P.Ferracin, S.Caspi, M.Zisman LBNL

R.Abrams, K.Beard, R.P.Johnson, M.A.Cummings, S.A.Kahn, S.Korenev, D.Newsham, T.J.Roberts Muons Inc.

> D.B.Cline, Y.Fukui , A.Garren UCLA

> > G.Hanson, A.Klier UC Riverside

L.M.Cremaldi, D.J.Summers University of Mississippi https://mctf.fnal.gov

NFMCC CM - Shiltsev

16 17 18 19 20 21 22

MCTF Organization

Low emittance option

Very challenging option so far:

- need convincing ideas of how to incorporate RF into HCC
- need proof that HPRF will work under ionizing beam
- needs viable design for the next cooling stages PIC/REMEX
- needs collider lattice design with necessary parameters

High emittance option

a rather solid ground under the feet, but not without its risks and deficiencies:

- high muon bunch intensity 2.10¹²
- slow cooling resulting in poor muon transmission
- high p-driver bunch intensity

MCTF scenario

tries to alleviate the shortcoming of the high emittance option by borrowing some ideas from the low emittance option:

- faster 6D cooling by using HCC and/or FOFO snake
- bunch merging at high energy (20-30GeV)
- additional cooling using Fernow lattice or PIC (may become possible due to later bunch merging and lower total intensity)
- increased rep-rate to compensate for reduction in peak luminosity

FY08 MCTF Design & Simulations Plan

Collider ring:

- Optimization of the collider ring design
- Study of implications of the "dipole first" option for detector protection
- Beam-beam simulations
- > Detailing of the design with corrector circuits, injection and collimation systems

Basic 6D ionization cooling:

- "Guggenheim" RFOFO channel:
 - More realistic modeling of the magnetic field
 - Alternative design with open cell RF cavities with solenoids in the irises
- Helical cooling channel
 - Design of RF structure which can fit inside the "slinky" helical solenoid
 - Design and simulation of the segmented channel
- FOFO snake:
 - tracking simulations and optimization
- ♦ Side-by-side comparison of the three structures to choosing the baseline scheme

Final cooling:

- Complete design of the 50T channel with required matching between the solenoids
- Channel design incorporating Fernow's lattice with zero magnetic field in RF
- Feasibility study of the PIC/REMEX scheme

Cell length =3.2 m, solenoid inner radius = 40cm, Bmax=2.4 T at p=100MeV/c HPRF cavities 2×16 cm long, E=25MV/m, GH2 fill with density 10% of LH2 Emittance decrement 1/25m, equilibrium emittances ~1.5 π ·mm

Recent Design work

- > theory of HCC with distributed RF revisited
- > new principle of resonant dispersion generation proposed
- > schemes for PIC in achromatic ring and HCC analyzed
- > effect of SC in PIC and "super-Fernow" channels clarified

Acceleration of Muons by ILC-type SC RF

Wall plug power estimates

	MC1999	HE2008	HE2008	LE2008	LE2008
Collider cm Energy (TeV)	3	1.5	3	C1.5	3
Luminosity (1e34)	7	1	3	3	3.5
Emittance (pi mm mmrad)	50	25	25	2.1	2.1
Rep rate (Hz)	15	13	8	65	32
Muons/beam (1e12)	8	2	2	1	1
PD beam power (MW)	4		2	3.6	8
Muon beam power (MW)	57 3	6.24	7.68	15.6	15.36
		<u>)</u>			
TOTAL wall plug power (MW).	204	60	83	166	158
PD (MW)		16	11	68	35
Bunching Ring(s) (MW)		4	4	4	4
Target station (MW)		1	1	1	1
Collection system (MV/)		4	4	4	4
Cooling system (MW)		4	12	2	2
Acceleration (MW)	130	25	32	81	93
Beamlines March 17-20, 2008		NFMCC	4 CM - Shiltsev	2	4 ₁₀

DWA-ILA for Muon Acceleration

- Dielectric Wall Acceleration (no ferrite) promises gradients ~100MV/m; novelties:
 - ➤ SiC photo-switches
 - ➤ PFL with dielectrics >400MV/m
 - ➤ High gradient vacuum insulators >100MV/m
- 10 cm 10 MeV section test expected in CY08 (G.Caporaso, LLNL)

FY08 MCTF Magnets Activities

- Magnet System Concepts for 6-D Cooling in Muon Collider.
 - Superconducting Helical Solenoids
 - Multi-stage magnet system from 6T to 20 T on conductor
 - ➤ Magnet system and RF cavities integration
- Small scale Helical Solenoid demonstration magnet
 - > Four coils magnet design, fabrication and test
- HTS High Field Solenoids Concepts for Muon Cooling Channels
- HTS superconductor properties

MCTF Magnets Status and Plans

- Significant progress this year, largely through magnet program base support, Muons Inc. collaboration and support from MCTF/APC
- Helical cooling channel design for 6-D cooling advances
- Short demonstration HCC magnet will be built and tested in 2008 with support from Muons Inc. and MCTF/APC
- HTS conductor studies continue at Fermilab (and elsewhere) on a range of materials, as a function of field, field angle, temperature
- Paper studies of High Field Solenoids show feasibility and difficulties in building magnets beyond the 40 T range
- Plans for a National Program for HTS High Field Conductor development have begun
- Results will be presented at EPAC08 and ASC08 Conferences

March 17-20, 2008 NFMCC CM - Shiltsev

13

HCC experimental goals

- The current focus is on
 - Develop and simulate a HCC design including RF cavities, with realistic engineering constraints
 - Test high pressure RF cavity with beam
 - Build and test a 4 coil HCC model magnet
- The aim is to establish the usefulness of a HCC and define a prototype HCC section to build and test in the next few years.
- Desired deliverable by MUTAC time cost estimate of the HCC section
 - a small group is set up

MTA Beamline

RF in HCC

\$1M Question: How to include RF?

- 1. RF inside coils?
- 2. RF in between coils?
- 3. RF and HCC separate?

coil coil support 0.4" - 1"insulating vacuum HP cavity 0.4" - 1" 0.4" - 1" 0.4" - 1"

How much space is needed between coil and cavity?

SS316,p=1500 psi,t(shell)=1.25 ",tend=2"

A Jansson, K Yonehara, V Kashikin, M Lamm, J Theilacker, A Klebaner, D Sun, A Lee, G Romanov, D Broemmelsiek, G Kutznetsov, A Shemyakin, ...

HCC simulations

K Yonehara

- •Early simulations ignored the geometric constraints on cavity size, then assumed $R_{\text{cavity}} = R_{\text{coil}}$
- Recent simulations indicate that R_{cavity} can be reduced further without much loss of acceptance!
 - •Need to explore the limits further
 - •Also need simulations of "separated function" HCC

Current Budget (M\$, fully loaded)

	FY07 Spent	FY08 Allocated *
MCTF	4.4	4.1
M&S	1.1	0.9
SWF	3.3	3.2

*DoE specified funding cap on all muon accelerator R&D at Fermilab

FY08 M&S (direct) vs Request

Activity	FY07 Spent	FY08 Allocated	FY08 Request
Travel	91	30	80 1)
HCC Magnet	58	60	230 2)
HTS	0	50	200 3)
MTA Beamline	573	220	300 4)
MUCOOL	50	160	280 5)
MICE	160	60	60
MCTF RF			120 ⁶⁾
6D HCC Section			100 7)
Mu2e Accel R&D			50 8)
TOTAL	932	580	1420

December 11, 2007 APC Budget Review 19

Scope of Initial Requests

- 1) Needed to meet travel needs associated with MICE
- 2) To move beyond initial "4 coil test" towards building an HCC section.
- 3) to exploit HTS conductor R&D momentum initiated with SBIR, and to push ahead with initiating a national HTS magnet collaboration needed to get our feet on the ground with this technology.
- 4) The MTA beamline estimate is 300k\$. Completing the beamline so that the first HPRF test can be made in FY08 is a priority.
- 5) Needed to complete the presently planned MUCOOL RF R&D in FY08 before the MICE solenoid arrives early FY09 (→ scheduling conflict)
- 6) Needed to extend the RF R&D to explore "magnetic insulation" against RF breakdown.
- 7) Needed to begin work towards bench testing an HCC 6D cooling section ... first step towards a 6D cooling experiment.
- 8) Beginning smth that can grow in coming years, and establishes that accel R&D for expts (as well as machines) is supported by APC

December 11, 2007 APC Budget Review 20

Summary

- Good news FY08 budget for Muon R&D has not vanished under severe budget constraints
- Lab's Major Muon R&D goals in FY08 are :
 - continue design/simulation efforts;
 - get 400 MeV beam in MTA;
 - start high-pressure RF studies with beam;
 - carry out MUCOOL tests (RF in B-field);
 - support MICE as planned;
 - design 6D HCC experiment;
 - construct 4 test coils;
 - develop HTS collaboration;
 - develop a 10+ yr plan that fits FNAL roadmap

Future

- Lab's desired roadmap to intensity and/or energy frontier:
 - -Tevatron (-2010) and NOvA (2011-2016)
 - —Project-X
 - R&D 2008-2011, constr 2012-2016
 - operation >2017 (to DUSEL?)
 - ~2012-13 make a choice for either 4 GeV
 NF or MC as next big machine
 - do muon accel R&D till 2012-13