Recent work on 750 x 750 GeV Collider

C. Johnstone and P. Snopok Fermilab and UC Riverside M. Berz MSU

Current Design Overview

- 750 GeV
 - Arc module ~5.3T dipole fields:
 - Fits ~circumference, surrounds present Tevatron tunnel
 - Direct piping of existing electrical, water, cryo services
 - Negative momentum compaction
 - Can be isochronous up to 3rd order in α
 - Peak beta functions are half of equivalent FODO cell
 - 40% smaller beam size in arcs
 - Lower fields allow potential for increased collider energy
 - Potentially up to 1 x 1 TeV
 - IR straight design: currently $\beta^*=1$ cm
 - IR quads ~10T
 - 6m IP to first quad spacing for detector
 - Zero dispersion derivative at IP (D=0 @IP)

Site Considerations

- Depth
 - Water tables
 - Geological constraints for tunnel construction
 - Civil engineering for tunnels "hundreds of meters" deep

General limitations

- Site depth and civil engineering:
 - Fermilab and BNL have depth constraints, for example; the larger of the two, restricted to <200m down.
 - Municipal water supply + substrate will not support tunnel.
 - The NUMI project at Fermilab entailed considerable civil engineering for an ~1 km long tunnel only 100 m deep – (won the 2005 civil engineering award)
 - Maintenance, water leaks are a problem even with the NUMI depth (muons are much nicer, however, from an activation standpoint)

Ring Structures: General Information

- IR: final focus + aberration correction section:
 - Relatively compact: ~425 m
 - Peak Beta function ~43 km
 - Linear chromaticity ~-500 to -700
- Arcs
 - Flexible Momentum compaction, ~70 m long
 - Momentum compaction corrected up to 3rd order
 - Peak beta function, ~110 m
- Scraping and utility section
 - Presently a simple representative R matrix
- Ring
 - ~ 1 km radius for 750 x 750 GeV
 - 2-fold symmetric
 - 64 arc modules

Table name = TWISS

Table name = TWISS

Table name = TWISS

Present and Future Work

- Implementation in COSY for high-order studies and correction
 - Kinematical corrections are important!
 - Cannot be done in MAD
 - Field-map codes such as ZGOUBI have limited optimization tools
- Tune optimiztion
 - Tune sweep is automatically performed in COSY using a simple R matrix to jump fractional tune (preserves match to all optical functions)
- High-order correction
 - Ocutpole families: DA was doubled using COSY to fit DA in 50 x 50 GeV collider
 - Decapole duo-decapole
- High-order chromatic correction
 - 2nd order chromatic correction appears essential
- Final momentum compaction adjustment
 - This is easy in FMC module beta functions essentially do not change, dispersion change is small so re-matching is not a problem.
- Tracking with fringe fields will be bad news

Example: DA optimization in COSY using octupole families for 50 x 50 GeV collider

