

Report of Project Manager

Michael S. Zisman

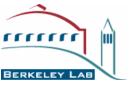
NFMCC Project Manager

Center for Beam Physics

Lawrence Berkeley National Laboratory

NFMCC Meeting-Fermilab March 18, 2008

Outline


- · Introduction
- Advantages
- · Challenges
- · R&D management process
- · R&D overview
- · Funding status
- · FY07 accounting
- · Recent R&D accomplishments
- · FY08 budget
- · FY08 plans
- · Issues
- · Summary and outlook

Introduction

- ·U.S. Neutrino Factory and Muon Collider Collaboration (NFMCC) explores techniques for producing, accelerating, and storing intense muon beams
 - near-term focus: muon storage ring to serve as source of wellcharacterized neutrinos ("Neutrino Factory") for long baseline experiments (~3000-7500 km)
 - longer-term focus: Muon Collider
 - Higgs Factory operating at few-hundred GeV or energy-frontier collider operating at several TeV
 - both types of machine will be difficult
 - obut, both have high scientific potential
 - a common feature of these state-of-the-art machines is the need for a sustained R&D program
 - omost modern projects (LHC, ILC, CLIC) share this need

Muon Accelerator Advantages

- Muon-beam accelerators can address both of the outstanding accelerator-related particle physics questions
 - neutrino sector
 - Neutrino Factory beam properties

$$\mu^{+} \rightarrow e^{+} \nu_{e} \overline{\nu}_{\mu} \Rightarrow 50\% \nu_{e} + 50\% \overline{\nu}_{\mu}$$

$$\mu^{-} \rightarrow e^{-} \overline{\nu}_{e} \nu_{\mu} \Rightarrow 50\% \overline{\nu}_{e} + 50\% \nu_{\mu}$$

Produces high energy neutrinos

- odecay kinematics well known
 - minimal hadronic uncertainties in the spectrum and flux
- $\circ \nu_e \rightarrow \nu_\mu$ oscillations give easily detectable "wrong-sign" μ
- energy frontier
 - opoint particle makes full beam energy available for particle production
 - couples strongly to Higgs sector
 - Muon Collider has almost no synchrotron radiation
 - narrow energy spread
 - fits on existing Lab sites

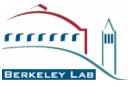
Muon Beam Challenges (1)

- Muons created as tertiary beam (p $\rightarrow \pi \rightarrow \mu$)
 - low production rate
 - oneed target that can tolerate multi-MW beam
 - large energy spread and transverse phase space
 - oneed solenoidal focusing for the low energy portions of the facility
 - solenoids focus in both planes simultaneously
 - oneed emittance cooling
 - ohigh-acceptance acceleration system and decay ring
- · Muons have short lifetime (2.2 µs at rest)
 - puts premium on rapid beam manipulations
 - o high-gradient RF cavities (in magnetic field) for cooling
 - opresently untested ionization cooling technique
 - ofast acceleration system
- Decay electrons give rise to backgrounds in collider detector

Muon Beam Challenges (2)

Magnet challenges

- 20 T magnet in high radiation environment (target)
- large aperture solenoids (up to 1.5 m) in cooling channel
- very strong solenoids (~50 T) for final collider cooling stages
- low fringe fields in acceleration system
 to accommodate SC RF cavities
- high mid-plane heat load in decay or collider ring

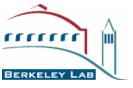

If intense muon beams were easy to produce, we'd already have them!

R&D Management Process

- · Each year R&D groups propose annual program to TB
 - based on overall NFMCC budget guidance from DOE
- · PM prepares budget based on this input
 - note: budget determined by R&D program, not "institutional commitments"
 - subsequently approved by TB, EB, and Co-Spokespersons
- · After budget finalized, PM negotiates milestones with each institution based on R&D plan
 - milestones specify both dates and deliverables
 - o "report card" generated at year's end to audit performance
- · PM summarizes spending and accomplishments each year in detailed report
 - given to MCOG and DOE at annual MUTAC review

R&D Overview (1)

NFMCC R&D program has the following components:


- simulation and theory effort
 - o supports both Neutrino Factory and Muon Collider design
 - NF work presently done under aegis of IDS-NF
- development of high-power target technology ("Targetry")
- development of cooling channel components ("MuCool")

· We participate in system tests as an international partner

- MERIT (high-power Hg-jet target)
- MICE (ionization cooling demonstration)
- EMMA (non-scaling FFAG electron model)

· Hardware development and system tests are major focus

simulation effort has led to cost-effective Neutrino factory design
 and progress toward a complete Muon Collider scenario

R&D Overview (2)

- NFMCC R&D program has already led to many innovative accelerator concepts and approaches
 - driven by our desire to solve challenging technical problems in support of the HEP experimental program
 - o enhanced support will further such innovation

· Examples:

Solenoidal pion capture from target

RF phase rotation and bunching scheme

Non scaling FFAG concept

Muon cooling channels (linear, ring, helix)

Theory of breakdown and conditioning in RF cavities

High-pressure gas-filled cavities for cooling*

Linear 6D helical cooling channel*

Phase space manipulation techniques*

High-field HTSC solenoids for giving low emittance*

*Muons, Inc.

Funding Status

- · Since FY03, NFMCC budget has been nearly "flat-flat"
 - we desire to restore it to FY01-02 levels

Year	DOE-base	DOE-NFMCC	TOTAL
	(\$M)	(\$M)	(\$M)
FY00	3.3	4.7	8.0
FY01	3.0	3.2	6.2
FY02	3.0	2.8	5.8
FY03	2.1	1.4	3.5
FY04	2.2	1.8°)	4.0
FY05	1.9	1.7	3.6
FY06	1.8	2.1 ^{b)}	3.9
FY07	1.8	2.5°)	4.3
FY08	2.1 ^{d)}	1.7	3.8

[&]quot;Includes \$0.4M supplemental funds

- helped by NSF funding for MICE and DOE-SBIR funding for Muons, Inc.
 - NSF: \$100K per year (FY05-07); \$750K FY06 MRI grant (tracker electronics, spectrometer solenoid); \$133K/year (FY08-10); FY08 MRI grant (\$798K) (Coupling coils and MICE RF)

b)Includes \$0.3M supplemental funds

c)Includes \$0.7M supplemental funds

d)Includes \$0.25M funds at BNL previously designated as AARD

FY07 Accounting

- FY07 budget finalized by Spokespersons and PM in December 2006
 - both MICE and MERIT were big-ticket items this year
 - ofinally getting a start on MuCool and MICE coupling coil fabrication
 - thanks to ICST collaboration (Jia, Li, Green) and NSF MRI (Summers)

MEMORANDUM OF UNDERSTANDING
Between
HARBIN INSTITUTE OF TECHNOLOGY
and
LAWRENCE BERKELEY NATIONAL LABORATORY

The parties to this Memorandum of Understanding hereby confirm and acknowledge their agreement to be bound by its terms by the following signatures:

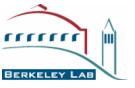
LAWRENCE BERKELEY NATIONAL

By Steven Chu, Director

Addendum To Memorandum of Understanding Between

Harbin Institute of Technology and Lawrence Berkeley National Laboratory Regarding Design, Fabrication, and Testing of Coupling Coil Magnets

The parties to this Addendum to the Memorandum of Understanding hereby confirm and acknowledge their intentions as set forth above by the following signatures:


By Bin Guo, Director Science and Feehnology Office

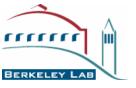
Date 2007, 9, 28

LAWRENCE BERKELY NATIONAL LABORATORY

Stephen Gourlay, Director

Date 2007/9/28

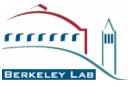
FY07 Funding Distribution



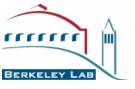
· FY07 NFMCC budget (only DOE-NFMCC funds)†

[†]Also: salary support from BNL, FNAL, LBNL; support from NSF of \$1M (\$750K MRI + \$100K 3-yr grant); support of Muons, Inc. via SBIR grants

Institution	COOLING /MICE	TARGETRY	ACCEL./ COLLIDER	RESERVE	TOTAL (\$K)
BNL		440			440
FNAL	50				50
LBNL ^{a,b}	1310				1310
ANL	185				185
IIT	85				85
Mississippi	42		18		60
Princeton		45			45
UCLA	25		45		70
UC-Riverside			95		95
ORNL		80			80
Jlab	5		5		10
TOTAL (\$K)	1702	565	163		2430


Includes MICE funding of \$680K.
Includes supplemental funding of \$630K for MUCOOL and MICE coupling coils.

Incremental Funding


- · Request this year was different than past years
 - DOE asked for scenarios for funding increase of 10% and 20%
 - submitted in October 2006
- · For +20%, proposed fabricating MuCool coupling coil
 - if Harbin arrangement worked out, remaining funds would be put toward MICE RF cavities (8 needed)
- ·For +10%, proposed fabricating MuCool coupling coil if Harbin was collaborating with us
 - if not, we would advance the schedule by purchasing the superconducting cable and preparing bid package for the fabrication
- · Actually got \$695K, of which \$50K went to BNL base and \$15K to LBNL base
 - also awarded \$798K NSF MRI to U.-Miss. (Summers)

Budget Comments

- · By juggling projects across fiscal year boundaries and careful prioritization, we continue to make progress
 - all our R&D efforts, including our international project commitments, have no contingency
 - only recourse for "contingent events" is delay (schedule slippage)
 - thus far, we've been fairly lucky
 - MICE schedule may be delayed 1 year due to inability to provide components in sufficiently timely way
- · Emphasis on hardware development for international experiments comes at price of attrition in effort level
 - trying this year to augment post-docs
 - oneed growth in this area; many interesting problems to work on
 - BNL staff decreased by 1 FTE and budget remains severely strained
 - need common funds for MICE or we will not be co-authors on papers

FY07 R&D Goals

Main goals for FY07 included:

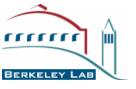
- carry out MERIT experiment
- continue development of MuCool Test Area (MTA)
 - oneeded enhanced vacuum system to accommodate RF tests in B field
 - o continue implementation of cryogenic system
- continue high-power tests of 805-MHz cavity
- continue high-power tests of 201-MHz cavity
 - oin particular, prepare for magnetic field tests
- begin fabrication of MICE spectrometer solenoids
- begin simulation effort in support of IDS-NF
- continue exploring and optimizing 6D cooling performance
 in conjunction with MCTF

FY07 Milestones

- Prior to distribution of funds, each institution provided milestones agreed upon by PM
 - these (example below) reflect budget allocations for each institution, including base program funds

UCLA [Cline] Milestone Continue support of MICE 5-station fiber tracker construction, assembly, and testing Design tabletop cooling ring with LiH absorbers Simulate curved Li lens ring configuration to understand emittance exchange process Continue study of Li lens pion capture channel followed by Li lens cooling channel Compare 6D cooling ring schemes and dipole cooler for muon collider development Continue study of scientific goals of muon collider	Date Sep-07 Jun-07 Sep-07 Sep-07 Jun-07 Sep-07	Deliverable MICE presentation PAC07 paper NFMCC note NFMCC note PAC07 paper NFMCC note
U-Miss. [Summers] Milestone Provide fabrication support for MICE RF cavities Manufacture and measure thin Al absorber windows for MICE Manufacture MUCOOL coupling coil support n = 1.07, 1.12 aerogel studies for MICE Cherenkov Participate in design of 50-T solenoid for 6D cooling studies Participate in design of 750 GeV muon acceleration in the Tevatron tunnel	Date Sep-07 Sep-07 Sep-07 Jul-07 Mar-07 Jul-07	Deliverable Inspection Inspection Inspection Paper written Conference paper Conference paper
IIT [Kaplan] Milestone Continue web support for MICE experiment Carry out MTA radiation measurements with 805- and 201-MHz cavities Document MTA phototube magnetic shielding and force analysis Carry out MICE beam line optimization Carry out MICE background analysis based on MTA data Update MTA DAQ system documentation Carry out RF cavity breakdown simulation	Date Sep-07 Feb-07 Jan-07 Apr-07 Jun-07 Aug-07 Jun-07	Deliverable Inspection NFMCC presentation NFMCC note MICE note MICE presentation Inspection PAC07 paper
UC-Riverside [Hanson] Milestone Hire NFMCC simulation post-doctoral research associate Continue simulations of 6D muon cooling Participate in MICE tracker commissioning and simulations Participate in muon cooling simulations for the International Design Study	Date Sep-07 Sep-07 Sep-07 Sep-07	Deliverable Inspection NFMCC note MICE note NFMCC note

FY07 Accounting



· Summary of FY07 spending:

	Collaboration		Base Program	Overall	
Institution	Committed	Uncommitted	Committed	Total	Contact
	(\$K)	(\$K)	(\$K)	(\$K)	
ANL	188	0	66	253	J. Norem
BNL [1]	564	136	1200	1764	H. Kirk
FNAL [2]	134	36	2616	2750	A. Bross
LBNL [3]	698	1698	346	1044	M. Zisman
ORNL	139	4	0	139	T. Burgess
Princeton U.	45	0	150	195	K. McDonald
UCLA	70	0	28	98	D. Cline
UC-Riverside [4]	1	94	373	374	G. Hanson
Mississippi	60	0	10	70	D. Summers
IIT [5]	64	30	0	64	D. Kaplan
Jlab	6	6	0	6	R. Rimmer
NSF MICE Support [6]	347	77	97	443	D. Kaplan
TOTALS [7]	1967	2004	4790	6757	1
TOTALO[i]	2314	2081	4700	7104	_

NOTES:

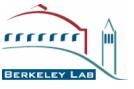
- [1] Uncommitted funds for MERIT experiment.
- [2] Uncommitted funds for MTA cryogenics and beam line.
- [3] Includes \$119K in uncommitted Project Reserve funds maintained by LBNL
- [4] Base funds are UC-Riverside startup funds.
- [5] Only DOE funds. NSF funding reported separately.
- [6] Funds allocated to IIT as primary contractor.
- [7] DOE totals in Roman type; additional NSF funding shown in italics.

Recent R&D Accomplishments

- · R&D progress made on most fronts:
 - Simulations/ISS + IDS-NF
 - Targetry/MERIT
 - Cooling/MICE

 Acceleration work on hold due to lack of funding at Cornell

Simulations



·NFMCC has been engaged in a number of recent efforts

- Feasibility Study I (with FNAL)
- Feasibility Study II (with BNL)
- APS Multi-Divisional Neutrino Study ("Study IIa," see http://www.aps.org/policy/reports/multidivisional/neutrino/)
- International Scoping Study (see http://www.hep.ph.ic.ac.uk/iss/)
 - Accelerator Working Group Report (finally!) completed (see http://www.cap.bnl.gov/mumu/project/ISS/iss-accel-report.pdf)
- follow-on IDS-NF to develop engineered facility design and corresponding cost estimate is under way (see http://www.hep.ph.ic.ac.uk/ids/)
 - Berg playing a lead role in this enterprise

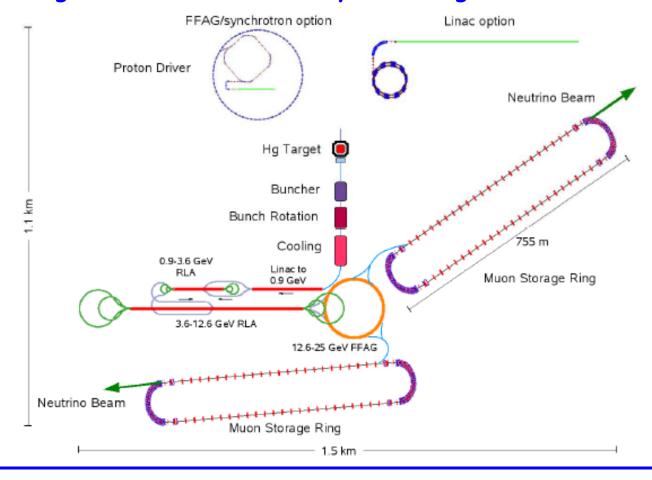
Accomplishments

- simplification of NF front-end design while maintaining performance
 "simplification" ⇒ cost savings of roughly 1/3 cf. study II
- development of international consensus on NF design aspects
- working with MCTF toward MC facility design (increasing interest here)


ISS Main Findings

· ISS compared existing NF designs to identify the most promising approaches

· Findings:

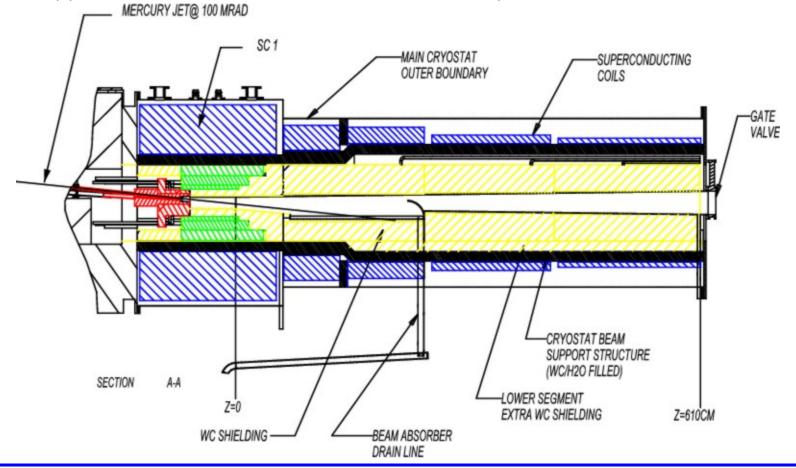

- optimum proton driver energy is 10 ± 5 GeV
- Hg-jet target gives optimal muon production for protons in preferred energy range
- Study IIa front end design is preferred, using simultaneous operation with both muon signs
- non-scaling FFAG beam dynamics limits performance and preferred approach will use only one, or at most two, such systems
- both racetrack and triangular rings possible (two rings needed in either case)
 - otriangle more efficient if two suitable sites are operating simultaneously
 - oracetrack better for a single detector site, and has no directional constraints

IDS-NF Baseline

- A baseline configuration for the Neutrino Factory has been specified
 - based in large measure on the Study IIa design

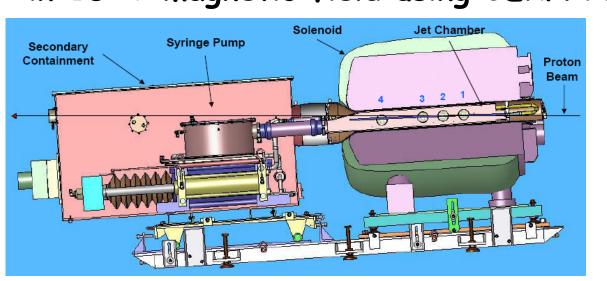
IDS-NF Baseline Parameters

Proton Driver

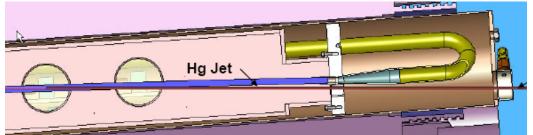

Proton Driver		Acceleration		
Proton power	4 MW	RF frequency	201.25 MHz	
Proton kinetic energy	5–15 GeV	RF type	Superconducting	
Pulses per second	50	Total energy at injection	244 MeV	
Bunches per pulse	3	Transverse normalized acceptance at input	30 mm	
Minimum time between bunches	17 μs	Longitudinal normalized acceptance at input	150 mm	
Maximum time for all bunches	40 μs	Stage 1, type	Linac	
RMS proton bunch length	1-3 ns	Stage 1, lattice cell	Solenoid FOFO	
Target		Stage 1, lattice cell	linac sol.opt	
Material	Hg	Stage 1, lattice files	linac sol.mad	
Туре	Liquid jet	Total energy, stage 1-2 transition	0.9 GeV	
Jet diameter	1 cm	Stage 2, type	Dogbone RLA	
Jet velocity	20 m/s	Stage 2, cavity aperture diameter	30 cm	
Jet angle to axis	100 mrad	Stage 2, energy gain per cavity cell	12.75 MV	
Jet angle to proton beam	33 mrad	Stage 2, lattice cell	FODO	
Proton beam angle to axis Front End	67 mrad		4.5	
Front End	for001.dat	Stage 2, linac passes		
ICOOL input files	for030.dat	Total energy, stage 2–3 transition	3.6 GeV	
•	for031.dat	Stage 3, type	Dogbone RLA	
		Stage 3, cavity aperture diameter	30 cm	
Storage Ring		Stage 3, energy gain per cavity cell	12.75 MV	
Total muon energy	25 GeV	Total energy, stage 3–4 transition	12.6 GeV	
Type	Racetrack	Store A trees	Linear	
Number of rings	2	Stage 4, type	non-scaling FFAG	
· ·	0.1/y	Stage 4, cavity aperture diameter	30 cm	
RMS angular divergence, production straight	0.1/γ 100 ns			
Gap between bunch trains		Stage 4, energy gain per cavity cell	12.75 MV	
Possible simultaneous signs per ring	2	Stage 4, lattice cell	FODO	
Total production straight μ decays in 10 ⁷ s	10 ²¹	Stage 4, cavity cells per lattice cell	2	
Short baseline	3000-5000 km			
Long baseline	7000–8000 km			

Targetry R&D

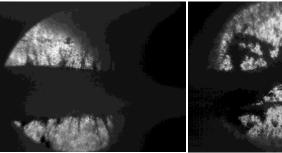
- · Target concept uses free Hg jet in 20-T solenoidal field
 - jet velocity of 20 m/s establishes "new" target for each beam pulse
 - this approach serves as basis of MERIT experiment

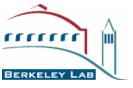


MERIT Experiment



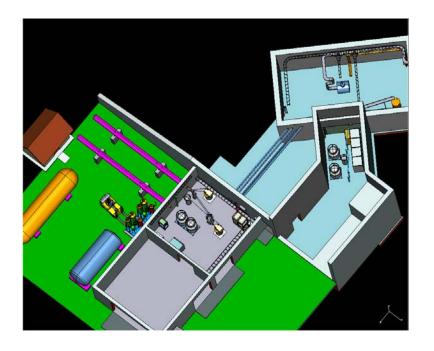
• MERIT recently carried out beam test of Hg-jet target in 15-T magnetic field using CERN PS


Installation at CERN



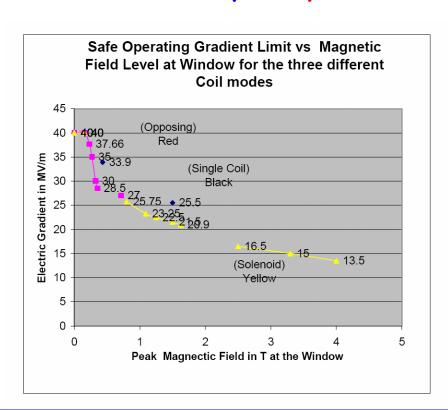
Schematic of MERIT experimental setup

Before After 10 Tp



MuCool R&D (1)

- · MuCool program does R&D on cooling channel components
 - RF cavities, absorbers
- · Carried out in newly constructed MuCool Test Area (MTA) at Fermilab (funded by NFMCC)
 - located at end of 400 MeV linac and shielded for eventual beam tests

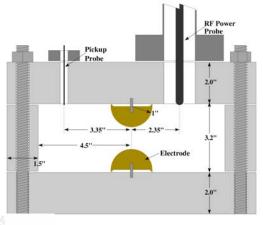


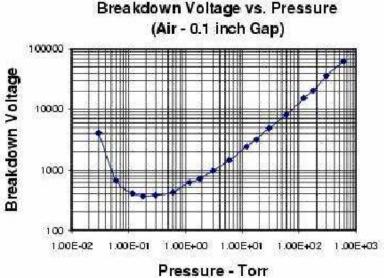
MuCool R&D (2)

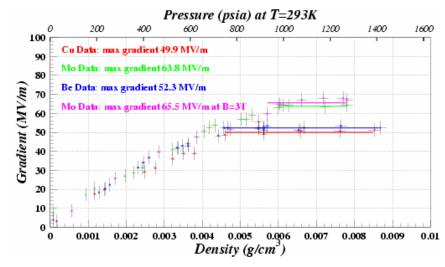
- · Motivation for cavity test program: observed degradation in cavity performance when strong magnetic field present
 - open-cell cavity did not show degradation, so problem seemingly not "fundamental"
 - 201 MHz cavity easily reached 19 MV/m without magnetic field

201 MHz cavity

5-T solenoid + 805-MHz cavity

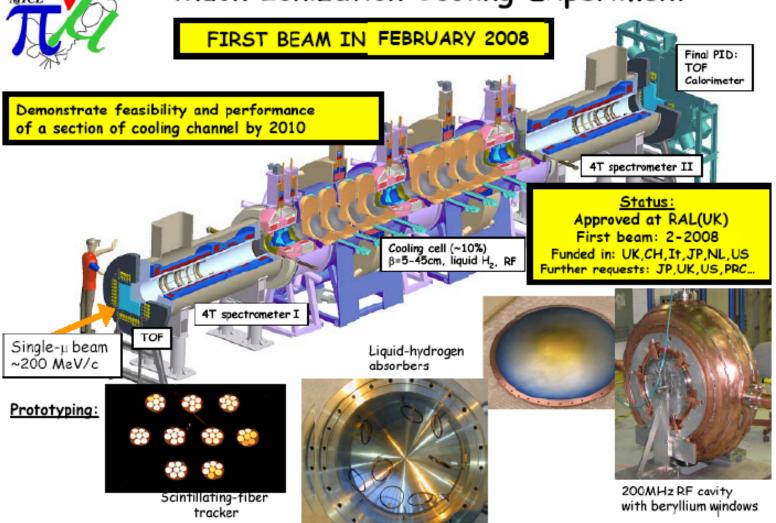

MuCool R&D (3)




· Tested pressurized button cavity at MTA (Muons, Inc.)

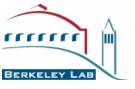
— use high-pressure H_2 gas to limit breakdown (\Rightarrow no magnetic field effect)

Remaining issue: What happens when high intensity beam traverses gas?



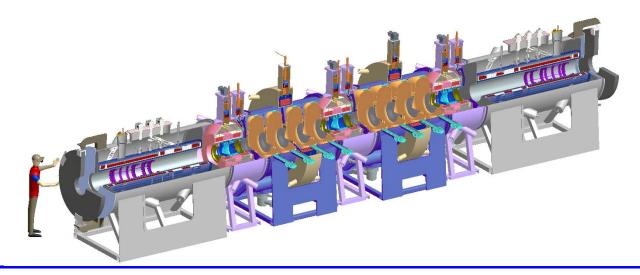
MICE Schematic

Muon Ionization Cooling Experiment


MICE Goals

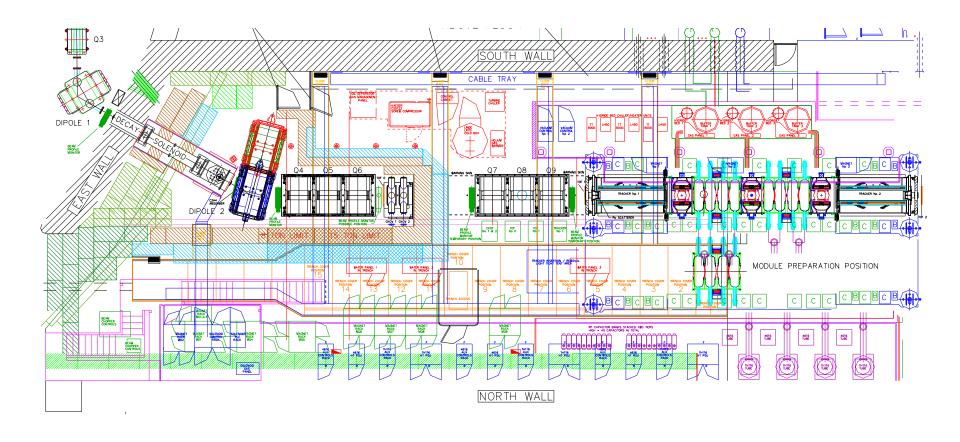
- To design, engineer and build a section of cooling channel capable of giving the desired performance for a Neutrino Factory
- To place this in a muon beam and measure its performance in various modes of operation and beam conditions
 - and reproduce the results with a simulation code!

· Challenges


- operating high-gradient RF cavities in solenoidal field
- operating LH₂ absorbers with thin windows in accord with safety needs
- integrating cooling channel components while maintaining operational functionality
- measuring small emittance reduction (~10%) to level of 10⁻³

MICE Description

- MICE includes one cell of the FS2 cooling channel
 - three Focus Coil modules with absorbers (LH2 or solid)
 - two RF-Coupling Coil modules (4 cavities per module)
- · Along with two Spectrometer Solenoids with scintillating fiber tracking detectors
 - plus other detectors for confirming particle ID and timing (determining phase wrt RF and measuring longitudinal emittance)
 - o TOF, Cherenkov, Calorimeter



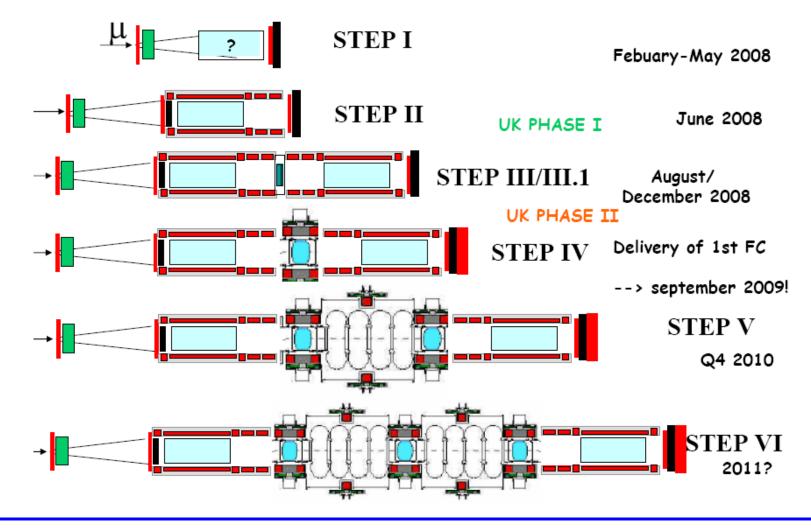
MICE Hall (1)

· Hall will contain a lot of equipment



MICE Hall (2)

· Some of which is now in place and ready to commission



MICE Stages

· Present staging plan (some delays have occurred)

MICE Collaborators

· Collaborating institutions

Europe Bari Brunel CERN Daresbury Lab Edinburgh Genève Genova Glasgow Impérial College Legnaro Liverpool LNF Frascati Louvain la Neuve Milano Napoli NIKHEF Novosibirsk Oxford Padova PSI Roma III Sheffield Sophia Trieste

<mark>Japan</mark> KEK Osaka

U.S.
ANL
BNL
Chicago-Enrico Fermi Institute
FNAL
Illinois Institute of Technology
TJNAF
LBNL
Mississippi
Muons, Inc.
UCLA
UC-Riverside

Shows broad international support for muon cooling study

International Perspective

· International community holds annual "NuFact" workshops

- provides opportunity for physics, detector, and accelerator groups to plan and coordinate R&D efforts at "grass roots" level
- venue rotates among geographical regions (Europe, Japan, U.S.)

volide l'élaies ailleig g				
<u>Year</u>	<u>Venue</u>			
1999	Lyon, France			
2000	Monterey, CA			
2001	Tsukuba, Japan			
2002	London, England			
2003	New York, NY			
2004	Osaka, Japan			
2005	Frascati, Italy			
2006	Irvine, CA			
2007	Okayama, Japan			
2008	Valencia, Spain			



FY08 Budget

- Prepared initial budget for FY08 based on (usual) guidance of flat-flat funding
 - from there it went downhill, but not drastically
- · Discussed and approved by TB, EB, and MCOG
- · Goal: keep university programs viable while making some progress on key fabrication activities
- · R&D obligations
 - proceed with MICE RFCC module fabrication
 - complete and decommission MERIT experiment
 - participate in IDS-NF and MICE (⇒ common fund payment)
 - continue RF test program at MTA
 - enhance effort on collider design

FY08 Funding Distribution

· FY08 NFMCC budget (only DOE-NFMCC funds)†

†Also: salary support from BNL, FNAL, LBNL; support from NSF of \$1M (\$798K MRI + \$133K 3-yr grant); support of Muons, Inc. via SBIR grants

Institution	COOLING /MICE	TARGETRY	ACCEL./ COLLIDER	RESERVE	TOTAL (\$K)
BNL		145	90		235
FNAL	55				55
LBNL ^a	810			22	832
ANL	190				190
IIT	80				80
Mississippi	30				30
Princeton		40			40
UCLA			55		55
UC-Riverside			95		95
ORNL		85			85
Jlab	3		10		13
TOTAL (\$K) ^a Includes MI	1168 CE funding of S	270 \$575K.	250	22	1710

FY08 Plans

· Targetry

— decommission MERIT and publish results

· Cooling/MICE

- continue testing 805- and 201-MHz cavities
 - owith magnetic field
 - otest gas-filled cavity with beam at MTA
- begin MICE beam line commissioning

· Acceleration

- continue system optimization for performance and cost
- participate in EMMA design

· Simulations

- participate in IDS-NF
- continue collider studies with MCTF
 - o aim for feasibility study in FY11-FY12

Issues

- · Three categories where additional support is needed:
 - completing our hardware commitments to international experiments
 - MICE hardware commitments will be honored at present budget levels, but may be 1 year late
 - any substantial need for contingency would risk further delays
 - restoring the health of our simulations and theory effort
 - omanpower has eroded away after years of flat budgets
 - need effort for IDS-NF, MICE analysis, EMMA design, and MCTF work
 - providing common funds for the MICE experiment
- Hope for strong endorsement from P5 to help improve our fortunes

Summary

- Despite limited funding, NFMCC continues to make excellent progress on carrying out its R&D program
 - 201 MHz test cavity tested to 19 MV/m
 - MICE spectrometer solenoid fabrication nearly completed
 - completed ISS; write-up posted o launched IDS-NF
 - completed MERIT beam rundata analysis under way
- · Our work provides potential choices for HEP community
 - muon-based accelerators/colliders offer advantages over other approaches
 they also provide an intense source for low-energy muon physics
- We have been disciplined and effective in carrying out our R&D tasks continue to make good use of our funding