Spectrometer Solenoid Fabrication Status and Schedule RF Cavity / Coupling Coil Module Plan and Progress

Steve Virostek

Lawrence Berkeley National Lab

NFMCC

March 18, 2008

MICE Cooling Channel Layout Spectrometer Solenoid 1 Spectrometer **Solenoid 2**

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 2

Overview (Spectrometer Solenoid)

- Completion of first magnet has been delayed by a problem with cold mass support clearances
- A second issue regarding the poor cryocooler performance in an off line test has been resolved
- Currently expect fabrication of the first magnet to be complete by mid to late April
- Coil winding, banding, wiring and reinforcement of the 2nd magnet is finished
- Completion of the second magnet to follow the first by approximately two months

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 3

Spectrometer Solenoid Cold Mass #1

Spectrometer Solenoid Cold Mass #2

Completed Cold Mass Assembly - Magnet #1

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 6

MLI Wrapping of Cold Mass Assembly

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 7

Outer Thermal Shield

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 8

MLI Wrapped Thermal Shield

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

The second

Page 9

Installation of Thermal Shield over Cold Mass

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 10

Installation of Thermal Shield over Cold Mass

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 11

Installation of Thermal Shield over Cold Mass

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

MICE Spectrometer Solenoid Fabrication Update and Schedule Status

Vacuum Vessel and Support Stand

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

MICE Spectrometer Solenoid Fabrication Update and Schedule Status

Inner Vacuum Vessel

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

MICE Spectrometer Solenoid Fabrication Update and Schedule Status

Service Tower Assembly

 Service tower accommodates

 three cryocoolers and fill/vent

 lines (one cryocooler sleeve

 assembly shown in place)

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 15

Cryocooler Experiment

Purpose:

- Measure cooler performance @ 2.5-22 K
- Confirm drop-in mode, measure heat leak

Update:

- 1st series of tests completed in November
- Results were not conclusive due to some deficiencies in the test apparatus
- System was modified including addition of a larger liquid He storage vessel
- Recent poor performance in testing due to either bad cooler, convective currents between 1st and 2nd stages or thermal acoustic oscillations in piping
- These issues were addressed, and 1.5 W cooling power at 2nd stage confirmed

Cryocooler Expeiment

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 17

Magnet #2: Cold Mass Winding Assembly

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 18

Spectrometer Solenoid Iron Shields

- Design integrated with TOF shield, and all fabrication drawings are near complete
- Two sets of shields needed at FNAL and two sets at RAL
- Quote obtained from JK Mfg near FNAL; need final drawings before placing order
- One of two shields at FNAL may be shipped to RAL, 2nd set fabricated in UK

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

MICE Spectrometer Solenoid Fabrication Update and Schedule Status

Updated Schedule Summary

Tack Description			2	006		2007													2008											
	Jun	Jul	Aug S	Sep Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct		
Place Magnet Order with Wang NMR (LBNL)	•	Cor	nplete																											
Complete Magnet System Design & Review				Comple	ete																									
Deliver Superconductor to Wang (LBNL)			🔶 Cor	nplete																										
Procure Coil Formers, Leads, Instrumentation, etc.								C	omple	ete																				
Wind Coils on Coil Formers																В	oth m	agnei	ts con	nplete	e									
Deliver 4 ea Cryocoolers to Wang (LBNL)										• •	Co	mplet	te																	
Buy Power Supplies & Send to Wang (LBNL, UCR)													► 4 ea	<mark>60 A</mark>	4	ea 30	A													
Assemble and Leak Check He Shell														[Com	plete				R	Ready to	o weld								
Fab System & Perform Cryocooler Tests																						Com	plete							
Fab and Load Test Cold Mass Supports																		Con	nplete	•										
Assemble Shield, Vac Vessel, Cold Mass Suppts													0	Cleara	nce Is	ssue														
Install Hi-Tc Leads, Recondensers & Cryocoolers																														
Leak Checks, Cooldown & Acceptance Tests																														
Prepare, Pacakge and Ship Magnets																														
Magnet Setup at FNAL																														
Magnetic Measurements & Commissioning at FNAL																														
Ship Magnets to RAL for Installation																										•				

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 20

Summary (Spectrometer Solenoid)

- 1st magnet expected to be complete in April
- Magnet to be tested at vendor, shipped to FNAL
- Completion delayed by cold mass support issue and cryocooler/condenser performance problem
- Coil winding, banding, reinforcement and wiring of 2nd magnet finished
- Cryocooler test modified and performance verfied
- Magnet #2 to follow ~2 months after #1
- Iron shield fabrication to start soon

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 21

Overview (RFCC module)

 A bottoms-up, WBS based plan (including a cost estimate and schedule) has been developed for completion of two RFCC modules

 A task list of ~300 items includes: engineering, design, reviews, procurement, fabrication, assembly, testing and shipping

 Current plan calls for funding and/or effort from the following institutions: Lawrence Berkeley National Lab, ICST/HIT at Harbin, University of Mississippi, UC Riverside and Oxford Physics

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 22

Funding and Schedule

- The early finish schedule and no contingency cost estimate results in delivery of the completed RFCC modules near the end of FY09
- •Currently projected funding may be sufficient to complete the project on the two year schedule
- Contingency and float can be provided by the use of FY10 funds and by stretching the schedule into FY10, if necessary
- •RF cavity design and fab is on the critical path

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 23

Preliminary Plan

 The detailed design of the cavities and associated subcomponents will be based on the prototype cavity design developed at LBNL and J-Lab

• The MuCool and MICE Coupling Coils have been designed and will be fabricated & tested at ICST

•LBNL engineering will coordinate the fabrication of the cavities using a combination of in-house shops, collaborator shops (U. Miss.) and outside resources (spinning, e-beam welding, etc.)

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 24

Preliminary Plan (cont'd)

 Subcomponent procurements (Be windows, RF windows and couplers, vacuum system, cryocoolers, power supplies) will be specified by LBNL & purchased w/funds from various sources

 Coupling coils, cavities and other components will likely be integrated into RFCC modules at LBNL using in-house technical resources

 Module testing will take place at LBNL prior to shipping to the MICE hall at RAL

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 25

Preliminary RFCC Module Schedule

Task Description		2007								2008											2009												
		J	A	S	0	N	D	J	F	М	A	М	J	J	Α	S	0	N	D		J	F	Μ	A	М	J	J	A	S	0	N	D	
Cavity and Subcomponent Engineering Design																																	
Cavity Body Fabrication																					_												
RF Couplers and Windows									C]										
Cavity Thin Beryllium Windows								C											1														
Tuner Mechanisms and Cavity Suspension											C																						
Cavity Assembly and Testing																																	
Module Vacuum Systems																																	
RF Module Vacuum Vessels																													1				
Coupling Coil LBNL Engineering & Purch Overhead																																	
LBNL Supplied Materials for Coupling Coils (3 ea)										-																							
MuCool Coil and Support Fabrication (\$ to ICST)																																	
Coupling Coil and RFCC Module Shipping																									[<mark>-</mark>						
Development of Interface Specifications																																	
RFCC Module Assembly, Installation and Integration																						Ļ								þ			

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

MICE Spectrometer Solenoid Fabrication Update and Schedule Status

Engineering, Design & Technical Resources

- An additional FTE engineer (Alan DeMello) at LBNL has been assigned to work on the module along with M. Green & S. Virostek
- ICST has the engineering and technical resources needed to complete the design and fabrication of the coupling coils (with some LBNL oversight)
- •Technical resources, machine shops & assembly facilities are currently available at LBNL

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 27

Funding Plan

 Projected available funding through LBNL (FY07-FY09), U. Miss. and UC Riverside may be sufficient to cover the estimated project costs

 ICST is funding the manpower & a portion of the raw material costs for completion of the coupling coils (bulk of material is coming from the US)

 The current cost estimates do not contain contingency - additional project \$ to be available in FY10 should provide adequate contingency

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 28

Updated RFCC Module 3D CAD Model

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 29

Coupling Coil Update

- An MOU between LBNL and ICST/HIT at Harbin for the Coupling Coil Project is in place
- The MOU includes an addendum with milestones and funding information as well as a technical agreement containing the magnet specifications
- 260 km of superconductor ordered (137 km rec'd)
- Additional procurements are under way first shipment of materials has been received at ICST
- ICST has completed the magnet final design and is ready to wind a pair of test coils

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 30

Coupling Coil Design

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

MICE Spectrometer Solenoid Fabrication Update and Schedule Status

Coupling Coil Components

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 32

Coupling Coil Analyses

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

ALLER ALL

Coil Winding Tooling

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 34

Summary (RFCC module)

- A detailed plan has been developed for the design and fabrication of two RFCC modules
- Both funding (?) and manpower required to complete the effort are available (new engineer on the project @ LBNL)
- ICST has completed the Coupling Coil design and is prepared to start winding a pair of test coils
- Material orders and shipment to ICST of Coupling Coil components are ongoing
- Design & analysis of the MICE 201 MHz cavity is under way
- A revised beryllium window design has been developed, and quotes have been obtained from the vendor

Steve Virostek -- Lawrence Berkeley National Laboratory -- March 18, 2008

Page 35