

Overview of the Targetry R&D Program

MERCINY SUPPLY PROTON BEAM TUBE PROTON BEAM TUBE MAGNET SUPPLY LINES MAGNET SUPPLY AND SHIELD CASING TARSET INTERACTION

Princeton U. NFMCC Meeting Fermilab, March 18, 2008

Targetry Web Page: http://puhep1.princeton.edu/mumu/target/

Targetry Challenges of a Neutrino Factory and Muon Collider

- Desire $\approx 10^{14} \ \mu/s$ from $\approx 10^{15} \ p/s$ ($\approx 4 \ MW$ proton beam).
- Highest rate μ^+ beam to date: PSI μ E4 with $\approx 10^9 \ \mu/s$ from $\approx 10^{16} \ p/s$ at 600 MeV.
- \Rightarrow Some R&D needed!

Palmer (1994) proposed a solenoidal capture system.

Low-energy π 's collect from side of long, thin cylindrical target.

Collects both signs of π 's and μ 's, \Rightarrow Shorter data runs (with magnetic detector).

Solenoid coils can be some distance from proton beam.

 $\Rightarrow\gtrsim4$ year life against radiation damage at 4 MW.

 \Rightarrow Proton beam readily tilted with respect to magnetic axis.

 $\Rightarrow \text{Beam dump (mercury pool)} \\ \text{out of the way of secondary } \pi\text{'s} \\ \text{and } \mu\text{'s.} \end{cases}$

The Neutrino Factory and Muon Collider Collaboration Target Survival

- Plausible that a new "conventional" graphite target could survive pulsed-beaminduced stresses at 2 MW.
 - Graphite target should be in helium atmosphere to avoid rapid destruction by sublimation, \Rightarrow Cool target by helium gas flow.
 - Radiation damage will require target replacement \approx monthly(?).
 - Graphite target less and less plausible beyond 2 MW.
 - Secondary particle collection favors shorter target, \Rightarrow High-Z materials.
- High-Z targets for > 2 MW should be replaced every pulse!
 - $-\Rightarrow$ Flowing liquid target: mercury, lead-bismuth,
 - $\begin{array}{l} \mbox{Pulsed beam} + \mbox{liquid in pipe} \Rightarrow \mbox{Destruction of pipe by cavitation bubbles}, \\ \Rightarrow \mbox{Use free liquid jet}. \end{array}$
 - Free liquid metal jets are stabilized by a strong longitudinal magnetic field.
 - Strong solenoid field around target favorable for collection of low-energy secondaries, as needed for ν Factory and Muon Collider.
 - \Rightarrow High-power liquid jet target R&D over last 10 years, sponsored by the Neutrino Factory and Muon Collider Collaboration.

Ongoing Targetry R&D

- Solid Targets (briefly reviewed in the rest of this talk).
- Free Mercury Jet Target (this session).

THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION Thermal Issues for Solid Targets, I

The quest for efficient capture of secondary pions precludes traditional schemes to cool a solid target by a liquid. (Absorption by plumbing; cavitation of liquid.)

A solid, radiation-cooled stationary target in a 4-MW beam will equilibrate at about 2500 C. \Rightarrow Carbon is only candidate for this type of target.

When beam pulse length t is less than target radius r divided by speed of sound v_{sound} , beam-induced pressure waves (thermal shock) are a major issue.

Simple model: if U = beam energy deposition in, say, Joules/g, then the instantaneous temperature rise ΔT is given by

$$\Delta T = \frac{U}{C}$$
, where $C = \text{heat capacity in Joules/g/K}$.

The temperature rise leads to a strain $\Delta r/r$ given by

$$\frac{\Delta r}{r} = \boldsymbol{\alpha} \Delta T = \frac{\boldsymbol{\alpha} U}{C}, \quad \text{where } \boldsymbol{\alpha} = \text{thermal expansion coefficient.}$$

The strain leads to a stress P (= force/area) given by

$$P = E \frac{\Delta r}{r} = \frac{E \alpha U}{C}$$
, where $E =$ modulus of elasticity.

In many metals, the tensile strength obeys $P \approx 0.002E$, $\alpha \approx 10^{-5}$, and $C \approx 0.3 \text{ J/g/K}$, in which case

$$U_{\max} \approx \frac{PC}{E\boldsymbol{\alpha}} \approx \frac{0.002 \cdot 0.3}{10^{-5}} \approx \ \mathbf{60} \ \mathbf{J/g}.$$

 \Rightarrow Best candidates for solid targets have high strength (Vascomax, Inconel, TiAl6V4) and/or low thermal expansion (Superinvar, Toyota "gum metal", carbon-carbon composite).

KIRK T. MCDONALD

NFMCC MEETING, MAR 18, 2008

A Carbon Target is Feasible at 1-2 MW Beam Power

Low energy deposition per gram and low thermal expansion coefficient reduce thermal "shock" in carbon.

Operating temperature > 2000C if use only radiation cooling.

A carbon target in vacuum would sublimate away in 1 day at 4 MW, but sublimation of carbon is negligible in a helium atmosphere.

Radiation damage is limiting factor: ≈ 12 weeks at 1 MW.

 \Rightarrow Carbon target is baseline design for most neutrino superbeams.

Useful pion capture increased by compact, high-Z target, \Rightarrow Continued R&D on solid targets.

How Much Beam Power Can a Solid Target Stand?

How many protons are required to deposit 60 J/g in a material?

What is the maximum beam power this material can withstand without cracking, for a 10-GeV beam at 10 Hz with area 0.1 cm^2 .

Ans: If we ignore "showers" in the material, we still have dE/dx ionization loss, of about 1.5 MeV/g/cm².

Now, 1.5 MeV = 2.46×10^{-13} J, so 60 J/ g requires a proton beam intensity of $60/(2.4 \times 10^{-13}) = 2.4 \times 10^{14}/\text{cm}^2$.

So, $P_{\text{max}} \approx 10 \text{ Hz} \cdot 10^{10} \text{ eV} \cdot 1.6 \times 10^{-19} \text{ J/eV} \cdot 2.4 \times 10^{14} / \text{cm}^2 \cdot 0.1 \text{ cm}^2 \approx 4 \times 10^5 \text{ J/s} = 0.4 \text{ MW}.$

If solid targets crack under singles pulses of 60 J/g, then safe up to only 0.4 MW beam power!

 $\begin{array}{l} \mbox{Empirical evidence is that some materials} \\ \mbox{survive 500-1000 J/g}, \\ \end{tabular} \Rightarrow \mbox{May survive 4 MW if rep rate} \gtrsim 10 \mbox{ Hz}. \end{array}$

Ni target in FNAL pbar source: "damaged but not failed" for peak energy deposition of 1500 J/g.

THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION Lower Thermal Shock If Lower Thermal Expansion Coefficient

ATJ graphite and a 3-D weave of carbon-carbon fibers instrumented with fiberoptic strain

sensors, and exposed to pulses of 4×10^{12} protons @ 24 Gev.

Thermal expansion coefficient of engineered materials is affected by radiation.

Super-Invar: CTE vs. dose:

Incoming optical fiber Gauge length Fabry-Perot cavity length

BNL E951 Target Experiment 24 GeV 3.0 e12 proton pulse on Carbon-Carbon and ATJ graphite targets Recorded strain induced by proton pulse

Carbon-carbon composite showed much lower strains than in the ordinary graphite – but readily damaged by radiation!

KIRK T. MCDONALD

NFMCC MEETING, MAR 18, 2008

Recent/Ongoing Solid Target Projects

MiniBooNE Horn Target Up to 5×10^{12} 8-GeV protons. Survived 10^8 pulses. Gas-cooled Be target.

30 kW beam power.

CNGS Target System Up to 7×10^{13} 400-GeV protons every 6 s. Beam $\sigma = 0.5$ mm. 5 interchangeable graphite targets.

Designed for 0.75 MW.

NUMI Target Upgrade Up to 1.5×10^{14} 120-GeV protons every 1.4 s. Beam $\sigma = 1.5$ mm. Designed for 1-2 MW.

Graphite + water cooling.

JPARC ν Horn Target Up to 4×10^{14} 50-GeV protons every 4 s. Beam $\sigma = 4$ mm. Designed for 0.75 MW. Graphite + He gas cooling.

Pulsed-Current Studies of Ta & W Wires at RAL (R. Bennett *et al.*)

Tungsten wire survived ~ 10⁸ pulses equivalent to a 2 MW beam on a 5-cm-diameter target.

New: Flowing Tungsten Powder Targets

(C. Densham et al., RAL)

KIRK T. MCDONALD

Liquid Jet Targets

A. Calder, Paris (1937):

Now at Fundació Joan Miró, Barcelona

Beam-Induced Cavitation in Liquids Can Break Pipes

ISOLDE:

Hg in a pipe (BINP):

Cavitation pitting of SS wall surrounding Hg target after 100 pulses (SNS):

Mitigate(?) by gas buffer \Rightarrow free Hg surface:

Water jacket of NuMI target developed a leak after ≈ 1 month. Perhaps due to beam-induced cavitation.

Ceramic drainpipe/voltage standoff of water cooling system of CNGS horn failed after 2 days operation at high beam power. (Not directly a beam-induced failure.)

\Rightarrow Use free liquid jet if possible.

NFMCC MEETING, MAR 18, 2008

Beam-Induced Effects on a Free Liquid Jet

Beam energy deposition may disperse the jet.

FRONTIER simulation predicts breakup via filamentation on mm scale:

THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION

Mercury Target Tests (BNL-CERN, 2001-2002)

Data: v_{dispersal} ≈ 10 m/s for U ≈ 25 J/g.
v_{dispersal} appears to scale with proton intensity.
The dispersal is not destructive.
Filaments appear only ≈ 40 µs after beam,
⇒ After several bounces of waves, OR v_{sound} very low.
Rayleigh surface instability damped by high magnetic field.

CERN nToF11 Experiment (MERIT)

- The MERIT experiment is a proof-of-principle demonstration of a free mercury jet target for a 4-megawatt proton beam, contained in a 15-T solenoid for maximal collection of soft secondary pions.
- MERIT = MERcury Intense Target.
- Key parameters:
 - 24-GeV Proton beam pulses, up to 16) bunches/pulse, up to $2.5 \times 10^{12} p$ /bunch.
 - $-\sigma_r$ of proton bunch = 1.2 mm, proton beam axis at 67 mrad to magnet axis.
 - Mercury jet of 1 cm diameter, v = 20 m/s, jet axis at 33 mrad to magnet axis.
 - $-\Rightarrow$ Each proton intercepts the Hg jet over 30 cm = 2 interaction lengths.
- Every beam pulse is a separate experiment.
 - $-\sim 360$ Beam pulses in total.
 - Vary bunch intensity, bunch spacing, number of bunches.
 - Vary magnetic field strength.
 - Vary beam-jet alignment, beam spot size.

Nerrite Ner

The Neutrino Factory and Muon Collider Collaboration

Run 3011, Diam right 10, 1.0 ms Pump/Probe [Pump]

CERN nToF11 Experiment (MERIT), II

- Data taken Oct. 22 Nov. 12, 2007 with mercury jet velocities of 15 & 20 m/s, magnetic fields up to 15 T, and proton pulses of up to 3×10^{13} in 2.5 μ s.
- As expected, beam-induced jet breakup is relatively benign, and somewhat suppressed at high magnetic field.
- "Pump-Probe" studies with bunches separated by up to 700 μ s indicated that the jet would hold together during, say, a 1-ms-long 8-GeV linac pulse.
- \Rightarrow Good success as proof-of-principle of liquid metal jet target in strong magnetic fields for use with intense pulsed proton beams.

- Magnetohydrodynamic Simulations (R. Samulyak).
- MERIT Experiment Status (H. Kirk).
- Optical Diagnostics Results (H.-J. Park).
- MERIT Particle Production Simulations (S. Striganov).
- Next Phase of Targetry R&D (K. McDonald, Wed. Mar. 19).