

Overview of the Targetry R&D Program

K.T. McDonald *Princeton U. NFMCC Meeting Fermilab, March 18, 2008*

Targetry Web Page: http://puhep1.princeton.edu/mumu/target/

THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION

Targetry Challenges of ^a Neutrino Factory and Muon Collider

• **Desire** $\approx 10^{14}$ μ /s from $\approx 10^{15}$ p/s (≈ 4 MW proton beam).

radii -

.
.
.

- \bullet Highest rate μ^+ beam to date: PSI μ E4 with $\approx 10^9$ μ/s from $\approx 10^{16}$ p/s at 600 MeV.
- *•* ⇒ **Some R&D needed!**

Palmer (1994) proposed ^a solenoidal capture system.

Low-energy *^π***'s collect from side of long, thin cylindrical target.**

Collects both signs of π 's and μ 's, [⇒] **Shorter data runs (with magnetic detector).**

Solenoid coils can be some distance from proton beam.

⇒ > ∼ **4 year life against radiation damage at 4 MW.**

[⇒] **Proton beam readily tilted with respect to magnetic axis.**

 \Rightarrow **Beam** dump (mercury pool) \bullet **out** of the way of secondary π 's and μ 's.

The Neutrino Factory and Muon Collider Collaboration **Target Survival**

- Plausible that a new "conventional" graphite target could survive pulsed-beam**induced stresses at 2 MW.**
	- Graphite target should be in helium atmosphere to avoid rapid destruction by \mathbf{s} **w** \mathbf{b} **sublimation,** \Rightarrow **Cool** \mathbf{target} **by** \mathbf{helium} **gas flow.**
	- $-$ **Radiation damage will require target replacement** \approx **monthly(?).**
	- **– Graphite target less and less plausible beyond 2 MW.**
	- **– Secondary particle collection favors shorter target,** [⇒] **High-**Z **materials.**
- *•* **High-**Z **targets for** > 2 **MW should be replaced every pulse!**
	- **–** [⇒] **Flowing liquid target: mercury, lead-bismuth,**
	- Pulsed beam + liquid in pipe \Rightarrow Destruction of pipe by cavitation bubbles, \Rightarrow Use free liquid jet.
	- Free liquid metal jets are stabilized by a strong longitudinal magnetic field.
	- Strong solenoid field around target favorable for collection of low-energy sec- $\boldsymbol{\delta}$ **ondaries, as needed for** ν $\boldsymbol{\mathrm{Factory}}$ **and** $\boldsymbol{\mathrm{M}$ **uon** $\boldsymbol{\mathrm{Collider}}$ **.**
	- \Rightarrow High-power liquid jet target R&D over last 10 years, sponsored by the **Neutrino Factory and Muon Collider Collaboration.**

Ongoing Targetry R&D

- *•* **Solid Targets (briefly reviewed in the rest of this talk).**
- *•* **Free Mercury Jet Target (this session).**

The Neutrino Factory and Muon Collider Collaboration **Thermal Issues for Solid Targets, I**

The quest for efficient capture of secondary pions precludes traditional schemes to cool a solid target by a liquid. (Absorption by plumbing; cavitation of liquid.)

A solid, radiation-cooled stationary target in a 4-MW beam will equilibrate at about $2500 \text{ C.} \Rightarrow \text{ Carbon is only candidate for this type of target.}$

Thermal Issues for Solid Targets, II

When beam pulse length t is less than target radius r divided by speed of sound $v_{\rm sound},$ **beam-induced pressure waves (thermal shock) are ^a major issue.**

Simple model: if $U=$ beam energy deposition in, say, Joules/g, then the instantaneous ${\bf t}$ **emperature** ${\bf r}$ **ise** ΔT **is given by**

$$
\Delta T = \frac{U}{C}, \quad \text{where } C = \text{heat capacity in Joules/g/K.}
$$

The <code>temperature</code> rise leads to a strain $\Delta r/r$ given by

$$
\frac{\Delta r}{r} = \alpha \Delta T = \frac{\alpha U}{C},
$$
 where α = thermal expansion coefficient.

 \bf{T} he strain leads to a stress P (= $\bf{force/area})$ given by

$$
P = E \frac{\Delta r}{r} = \frac{E \alpha U}{C},
$$
 where E = modulus of elasticity.

 ${\bf In\ many\ metals,\ the\ tensile\ strength\ obeys\ } P \approx 0.002E,\ \alpha \approx 10^{-5},\ {\rm and}\ \ C \approx 0.3\ {\bf J/g/K,}$ **in which case** 0.002×0.3

$$
U_{\text{max}} \approx \frac{PC}{E\alpha} \approx \frac{0.002 \cdot 0.3}{10^{-5}} \approx 60 \text{ J/g}.
$$

 \Rightarrow Best candidates for solid targets have high strength (Vascomax, Inconel, TiAl6V4) **and/or low thermal expansion (Superinvar, Toyota "gum metal", carbon-carbon composite).**

A Carbon Target is Feasible at 1-2 MW Beam Power

Low energy deposition per gram and low thermal expansion coefficient reduce thermal **"shock" in carbon.**

Operating temperature > 2000**C if use only radiation cooling.**

A carbon target in vacuum would sublimate away in 1 day at 4 MW, but sublimation **of carbon is negligible in ^a helium atmosphere.**

 \bf{R} \bf{a} \bf{b} \bf{a} \bf{b} \bf{b} \bf{c} \bf{b} \bf{c} \bf{b} \bf{c} \bf{b} \bf{c} $\bf{c$

 \Rightarrow Carbon target is baseline design for most neutrino superbeams.

Useful pion capture increased by compact, high-Z **target,** [⇒] **Continued R&D on solid targets.**

How Much Beam Power Can ^a Solid Target Stand?

How many protons are required to deposit ⁶⁰ J/g in ^a material?

What is the maximum beam power this material can withstand without cracking, for **^a 10-GeV beam at 10 Hz with area 0.1 cm** 2**.**

Ans: If we ignore "showers" in the material, we still have dE/dx ionization loss, ${\bf of~about~1.5~MeV/g/cm^2}.$

 ${\bf Now,\ 1.5\,\ MeV} = 2.46\times 10^{-13}$ J, so ${\bf 60\,\ J}/\,$ g requires a proton beam intensity of $60/(2.4 \times 10^{-13}) = 2.4 \times 10^{14}/\text{cm}^2$.

 ${\bf So,\,} P_{\rm max}\approx10\,\,{\bf Hz}\cdot10^{10}\,\,{\bf eV}\cdot1.6\times10^{-19}\,\,{\bf J/eV}\cdot2.4\times10^{14}/{\bf cm}^2\cdot0.1\,\,{\bf cm}^2\approx4\times10^5\,\,{\bf J/s}\,=\,{\bf 0.4\,\,MW}.$

If solid targets crack under singles pulses of 60 J/g , then safe up to only 0.4 MW **beam power!**

Empirical evidence is that some materials survive 500-1000 J/g, \Rightarrow May survive 4 MW if rep rate $\gtrsim 10$ Hz.

Ni target in FNAL p**bar source: "damaged but not failed" for peak energy deposition** of 1500 J/g.

THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION **Lower Thermal Shock If Lower Thermal Expansion Coefficient**

ATJ graphite and ^a 3-D weave of carbon-carbon fibers instrumented with fiberoptic strain

 $\tt{sensors, and exposed to pulses of $4 \times 10^{12}~\text{protons}}$$ **@ 24 Gev.**

Thermal expansion coefficient of engineered materials is affected by radiation.

Super-Invar: CTE *vs.* **dose:**

Fabry-Perot cavity length Incoming optical fiber Gauge length

BNL E951 Target Experiment 24 GeV 3.0 e12 proton pulse on Carbon-Carbon and ATJ graphite targets Recorded strain induced by proton pulse

Carbon-carbon composite showed much lower strains than in the ordinary graphite – but readily damaged by radiation!

KIRK T. MCDONALD NEMCC MEETING, MAR 18, 2008 9

The Neutrino Factory and Muon Collider Collaboration

Recent/Ongoing Solid Target Projects

MiniBooNE Horn Target \bf{Up} to 5×10^{12} 8-GeV protons. **Survived** ¹⁰⁸ **pulses. Gas-cooled Be target.**

30 kW beam power.

CNGS Target System \bf{Up} to $\rm 7 \times 10^{13}$ $\bf{400\text{-}GeV}$ **protons every 6 s.** $\textbf{Beam}\ \sigma=0.5\ \textbf{mm}.$ **5 interchangeable graphite targets.**

Designed for 0.75 MW.

NUMI Target Upgrade $\mathbf{Up} \text{ to } 1.5 \times 10^{14} \text{ } \mathbf{120\text{-}GeV}$ **protons every 1.4 s.** $\textbf{Beam}\ \sigma=1.5\ \textbf{mm}.$ **Designed for 1-2 MW.**

Graphite + water cooling.

JPARC ^ν **Horn Target** \bf{Up} to 4×10^{14} ${\bf 50\text{-}GeV}$ protons **every 4 s.** $\textbf{Beam}\ \sigma=4\ \textbf{mm}.$ **Designed for 0.75 MW. Graphite + He gas cooling.**

Pulsed-Current Studies of Ta & W Wires at RAL (R. Bennett *et al.* **)**

to a 2 MW beam on a 5-cm-diameter target.

New: Flowing Tungsten Powder Targets

THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION

Liquid Jet Targets

A. Calder, Paris (1937):

Now at Fundaci´o Joan Mir´o, Barcelona

Beam-Induced Cavitation in Liquids Can Break Pipes

ISOLDE:

Hg in ^a ^pipe (BINP):

Cavitation pitting of SS wall surrounding Hg target after ¹⁰⁰ pulses (SNS):

 $\textbf{Mitigate(?)}\ \textbf{by gas buffer} \Rightarrow \textbf{free Hg surface:}$

Water jacket of NuMI target developed a leak after \approx 1 month. **Perhaps due to beam-induced cavitation.**

Ceramic drainpipe/voltage standoff of water cooling system of CNGS horn failed after 2 days *operation at high beam power. (Not directly ^a beam-induced failure.)*

\Rightarrow Use free liquid jet if possible. KIRK T. MCDONALD NFMCC MEETING, MAR 18, 2008 12

The Neutrino Factory and Muon Collider Collaboration

Beam-Induced Effects on ^a Free Liquid Jet

Beam energy deposition may disperse the jet.

FRONTIER simulation predicts breakup via filamentation on mm scale:

The Neutrino Factory and Muon Collider Collaboration

Mercury Target Tests (BNL-CERN, 2001-2002)

KIRK T. MCDONALD NFMCC MEETING, MAR 18, 2008 14

CERN nToF11 Experiment (MERIT)

- The MERIT experiment is a proof-of-principle demonstration of a free mercury jet target for a 4-megawatt proton beam, contained in a 15-T solenoid for maximal **collection of soft secondary pions.**
- *•* **MERIT ⁼ MERcury Intense Target.**
- *•* **Key parameters:**
	- 24-GeV Proton beam pulses, up to 16) bunches/pulse, up to 2.5×10^{12} $p/\text{bunch.}$
	- $-\sigma_r$ of proton bunch = 1.2 mm, proton beam axis at 67 mrad to magnet axis.
	- Mercury jet of 1 cm diameter, $v = 20$ m/s, jet axis at 33 mrad to magnet axis.
	- \Rightarrow Each proton intercepts the Hg jet over 30 cm = 2 interaction lengths.
- *•* **Every beam pulse is ^a separate experiment.**
	- \sim 360 **Beam** pulses in total.
	- **– Vary bunch intensity, bunch spacing, number of bunches.**
	- **– Vary magnetic field strength.**
	- **– Vary beam-jet alignment, beam spot size.**

CNG.

CTF3 SDM 11.05.2005 **Williamman TERESTORIES** $\sqrt{2}$

Ruby (16,514.-0,082

Fon U Days

THE NEUTRINO FACTORY AND MUON COLLIDER COLLABORATION

 $\frac{1}{12.4}$ 12.6 12.8
time [μ s]

11.4 11.6 11.8

 12

 12.2

 13

 13.2 13.4

CERN nToF11 Experiment (MERIT), II

- Data taken Oct. 22 Nov. 12, 2007 with mercury jet velocities of 15 & 20 m/s, magnetic fields up to 15 T, and proton pulses of up to 3×10^{13} in 2.5 $\mu\mathrm{s}.$
- *•* **As expected, beam-induced jet breakup is relatively benign, and somewhat suppressed at high magnetic field.**
- "Pump-Probe" studies with bunches separated by up to 700 μ s indicated that the **jet would hold together during, say, ^a 1-ms-long 8-GeV linac pulse.**
- $\bullet \Rightarrow$ Good success as proof-of-principle of liquid metal jet target in strong magnetic **fields for use with intense pulsed proton beams.**

- *•* **Magnetohydrodynamic Simulations (R. Samulyak).**
- *•* **MERIT Experiment Status (H. Kirk).**
- *•* **Optical Diagnostics Results (H.-J. Park).**
- *•* **MERIT Particle Production Simulations (S. Striganov).**
- *•* **Next Phase of Targetry R&D (K. McDonald, Wed. Mar. 19).**