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The Neutrino Factory and Muon Collider Collaboration

Targetry Challenges of a Neutrino Factory and Muon Collider

• Desire ≈ 1014 μ/s from ≈ 1015 p/s (≈ 4 MW proton beam).

• Highest rate μ+ beam to date: PSI μE4 with ≈ 109 μ/s from ≈ 1016 p/s at 600 MeV.

• ⇒ Some R&D needed!

Palmer (1994) proposed a solenoidal capture system.

Low-energy π’s collect from side

of long, thin cylindrical target.

Collects both signs of π’s and μ’s,

⇒ Shorter data runs (with

magnetic detector).

Solenoid coils can be some

distance from proton beam.

⇒ >∼ 4 year life against radiation

damage at 4 MW.

⇒ Proton beam readily tilted

with respect to magnetic axis.

⇒ Beam dump (mercury pool)

out of the way of secondary π’s

and μ’s. length �cm�
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The Neutrino Factory and Muon Collider Collaboration

Target Survival

• Plausible that a new “conventional” graphite target could survive pulsed-beam-

induced stresses at 2 MW.

– Graphite target should be in helium atmosphere to avoid rapid destruction by

sublimation, ⇒ Cool target by helium gas flow.

– Radiation damage will require target replacement ≈ monthly(?).

– Graphite target less and less plausible beyond 2 MW.

– Secondary particle collection favors shorter target, ⇒ High-Z materials.

• High-Z targets for > 2 MW should be replaced every pulse!

– ⇒ Flowing liquid target: mercury, lead-bismuth, .....

– Pulsed beam + liquid in pipe ⇒ Destruction of pipe by cavitation bubbles,

⇒ Use free liquid jet.

– Free liquid metal jets are stabilized by a strong longitudinal magnetic field.

– Strong solenoid field around target favorable for collection of low-energy sec-

ondaries, as needed for ν Factory and Muon Collider.

– ⇒ High-power liquid jet target R&D over last 10 years, sponsored by the

Neutrino Factory and Muon Collider Collaboration.
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The Neutrino Factory and Muon Collider Collaboration

Ongoing Targetry R&D

• Solid Targets (briefly reviewed in the rest of this talk).

• Free Mercury Jet Target (this session).
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The Neutrino Factory and Muon Collider Collaboration

Thermal Issues for Solid Targets, I

The quest for efficient capture of secondary pions precludes traditional schemes to

cool a solid target by a liquid. (Absorption by plumbing; cavitation of liquid.)

A solid, radiation-cooled stationary target in a 4-MW beam will equilibrate at about

2500 C. ⇒ Carbon is only candidate for this type of target.

Carbon target must be in He atmosphere

to suppress sublimation.

(Neutrino Factory Study 1)

A moving band target (Ta, W, ...) could

be considered (if capture system is

toroidal).
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The Neutrino Factory and Muon Collider Collaboration

Thermal Issues for Solid Targets, II

When beam pulse length t is less than target radius r divided by speed of sound vsound,

beam-induced pressure waves (thermal shock) are a major issue.

Simple model: if U = beam energy deposition in, say, Joules/g, then the instantaneous

temperature rise ΔT is given by

ΔT =
U

C
, where C = heat capacity in Joules/g/K.

The temperature rise leads to a strain Δr/r given by

Δr

r
= αΔT =

αU

C
, where α = thermal expansion coefficient.

The strain leads to a stress P (= force/area) given by

P = E
Δr

r
=

EαU

C
, where E = modulus of elasticity.

In many metals, the tensile strength obeys P ≈ 0.002E, α ≈ 10−5, and C ≈ 0.3 J/g/K,

in which case

Umax ≈ PC

Eα
≈ 0.002 · 0.3

10−5
≈ 60 J/g.

⇒ Best candidates for solid targets have high strength (Vascomax, Inconel, TiAl6V4)

and/or low thermal expansion (Superinvar, Toyota “gum metal”, carbon-carbon com-

posite).
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The Neutrino Factory and Muon Collider Collaboration

A Carbon Target is Feasible at 1-2 MW Beam Power

Z
Y

X

NUMI TARGET DESIGN

Target Tooth

 Water Coolant
Channels

Beam
Aluminum Plate

HASSANEIN (ANL)

NEUTRINO-FACTORY TARGET DESIGN

Cylindrical Graphite Target 

Incident Beam

Exit Beam

R

Z

Low energy deposition per gram and low thermal expansion coefficient reduce thermal

“shock” in carbon.

Operating temperature > 2000C if use only radiation cooling.

A carbon target in vacuum would sublimate away in 1 day at 4 MW, but sublimation

of carbon is negligible in a helium atmosphere.

Radiation damage is limiting factor: ≈ 12 weeks at 1 MW.

⇒ Carbon target is baseline design for most neutrino superbeams.

Useful pion capture increased by compact, high-Z target,

⇒ Continued R&D on solid targets.
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The Neutrino Factory and Muon Collider Collaboration

How Much Beam Power Can a Solid Target Stand?

How many protons are required to deposit 60 J/g in a material?

What is the maximum beam power this material can withstand without cracking, for

a 10-GeV beam at 10 Hz with area 0.1 cm2.

Ans: If we ignore “showers” in the material, we still have dE/dx ionization loss,

of about 1.5 MeV/g/cm2.

Now, 1.5 MeV = 2.46 × 10−13 J, so 60 J/ g requires a proton beam intensity of

60/(2.4 × 10−13) = 2.4 × 1014/cm2.

So, Pmax ≈ 10 Hz ·1010 eV ·1.6×10−19 J/eV ·2.4×1014/cm2 ·0.1 cm2 ≈ 4×105 J/s = 0.4 MW.

If solid targets crack under singles pulses of 60 J/g, then safe up to only 0.4 MW

beam power!

Empirical evidence is that some materials

survive 500-1000 J/g,

⇒ May survive 4 MW if rep rate >∼ 10 Hz.

Ni target in FNAL pbar source:

“damaged but not failed” for peak energy

deposition of 1500 J/g.
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Lower Thermal Shock If Lower Thermal Expansion Coefficient

ATJ graphite and a 3-D weave of carbon-carbon
fibers instrumented with fiberoptic strain

sensors, and exposed to pulses of 4 × 1012 protons

@ 24 Gev.

Fabry-Perot cavity length

Incoming optical fiber
Gauge length

Carbon-carbon composite showed much lower
strains than in the ordinary graphite – but

readily damaged by radiation!

Thermal expansion coefficient of engineered

materials is affected by radiation.

Super-Invar: CTE vs. dose:
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The Neutrino Factory and Muon Collider Collaboration

Recent/Ongoing Solid Target Projects

MiniBooNE Horn Target
Up to 5 × 1012 8-GeV protons.

Survived 108 pulses.

Gas-cooled Be target.

30 kW beam power.

CNGS Target System
Up to 7 × 1013 400-GeV

protons every 6 s.

Beam σ = 0.5 mm.

5 interchangeable graphite
targets.

Designed for 0.75 MW.

NUMI Target Upgrade
Up to 1.5 × 1014 120-GeV

protons every 1.4 s.

Beam σ = 1.5 mm.
Designed for 1-2 MW.

Graphite + water cooling.

JPARC ν Horn Target
Up to 4 × 1014 50-GeV protons

every 4 s.
Beam σ = 4 mm.

Designed for 0.75 MW.

Graphite + He gas cooling.

Pulsed-Current Studies

of Ta & W Wires at RAL

(R. Bennett et al.)

New: Flowing Tungsten

Powder Targets

(C. Densham et al., RAL)
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Liquid Jet Targets

A. Calder, Paris (1937):

Now at Fundació Joan Miró, Barcelona
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The Neutrino Factory and Muon Collider Collaboration

Beam-Induced Cavitation in Liquids Can Break Pipes

ISOLDE:

Hg in a pipe (BINP):

Cavitation pitting of SS wall surrounding Hg

target after 100 pulses (SNS):

Mitigate(?) by gas buffer ⇒ free Hg surface:

Water jacket of NuMI target developed a leak after ≈ 1 month.

Perhaps due to beam-induced cavitation.

Ceramic drainpipe/voltage standoff of water cooling system of CNGS horn failed after 2 days

operation at high beam power. (Not directly a beam-induced failure.)

⇒ Use free liquid jet if possible.
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Beam-Induced Effects on a Free Liquid Jet

Beam energy deposition may disperse the jet.

FRONTIER simulation predicts breakup via filamentation on mm scale:

Laser-induced breakup of a

water jet:

(J. Lettry, CERN)
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Mercury Target Tests (BNL-CERN, 2001-2002)

Proton
Beam

Mercury
Jet

Data: vdispersal ≈ 10 m/s for U ≈ 25 J/g.

vdispersal appears to scale with proton intensity.

The dispersal is not destructive.

Filaments appear only ≈ 40 μs after beam,

⇒ After several bounces of waves, OR vsound very

low.

Rayleigh surface instability damped by high

magnetic field.
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CERN nToF11 Experiment (MERIT)

• The MERIT experiment is a proof-of-principle demonstration of a free mercury

jet target for a 4-megawatt proton beam, contained in a 15-T solenoid for maximal

collection of soft secondary pions.

• MERIT = MERcury Intense Target.

• Key parameters:

– 24-GeV Proton beam pulses, up to 16) bunches/pulse, up to 2.5× 1012 p/bunch.

– σr of proton bunch = 1.2 mm, proton beam axis at 67 mrad to magnet axis.

– Mercury jet of 1 cm diameter, v = 20 m/s, jet axis at 33 mrad to magnet axis.

– ⇒ Each proton intercepts the Hg jet over 30 cm = 2 interaction lengths.

• Every beam pulse is a separate experiment.

– ∼ 360 Beam pulses in total.

– Vary bunch intensity, bunch spacing, number of bunches.

– Vary magnetic field strength.

– Vary beam-jet alignment, beam spot size.
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CERN nToF11 Experiment (MERIT), II

• Data taken Oct. 22 – Nov. 12, 2007 with mercury jet velocities of 15 & 20 m/s,

magnetic fields up to 15 T, and proton pulses of up to 3 × 1013 in 2.5 μs.

• As expected, beam-induced jet breakup is relatively benign, and somewhat

suppressed at high magnetic field.

• “Pump-Probe” studies with bunches separated by up to 700 μs indicated that the

jet would hold together during, say, a 1-ms-long 8-GeV linac pulse.

• ⇒ Good success as proof-of-principle of liquid metal jet target in strong magnetic

fields for use with intense pulsed proton beams.
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MERIT Experiment Talks

• Magnetohydrodynamic Simulations (R. Samulyak).

• MERIT Experiment Status (H. Kirk).

• Optical Diagnostics Results (H.-J. Park).

• MERIT Particle Production Simulations (S. Striganov).

• Next Phase of Targetry R&D (K. McDonald, Wed. Mar. 19).
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