Preliminary Design of an FFAG to 25 GeV for the IDS

J. Scott Berg Brookhaven National Laboratory NFMCC Collaboration Meeting 19 March 2008

Linear Non-Scaling FFAG

- Larger number of passes through RF
- Arc accepts factor of 2 or more in energy
- Reasonable magnet aperture
- Accelerates using high-frequency RF
- Simple (FODO, doublet), identical cells
- Linear combined-function magnets
- Sufficient drift for RF cavity

Design Goals

 Accelerate from 12.6 GeV to 25 GeV ○ 30 mm normalized transverse acceptance • Two 201 MHz SCRF cells per lattice cell □ Time variation with transverse amplitude Four empty drifts for injection/extraction Drift lengths: 2 m (FODO)/3 m (doublet) Optimize for cost including decays

Parameters

	FODO	Doublet
Cells	62	61
D radius (cm)	9.5	10.3
D peak field (T)	7.6	8.4
F radius (cm)	20.7	20.6
F peak field (T)	3.4	3.1
Circumference (m)	462 m	463 m
RF Voltage (MV)	1526	1450
Decay loss (%)	3.5	3.7

Lattice Design Discussion

 FODO and doublet lattices very similar □ Costs, size comparable Both have somewhat over 8 turns Doublet needs slightly less voltage Doublet has higher field, larger D magnet ○ Biggest difference: longer (3 m vs. 2 m) drift in doublet

Injection

- Septum followed by kicker in subsequent drift
- O 2 cm separation between circulating beam and injected beam at septum
- Ideal tune septum to kicker: 0.25
- Horizontal injection
- Prefer septum just before defocusing magnet
 Defocusing magnet pushes beam out
 Beam smaller near defocusing magnet

Lattice Tune

Injection Parameters

FODO Doublet Doublet FODO First Second F First D First 0.62 0.62 1.19 Kicker Field (T) 0.88 16.1 D Radius (cm) 11.0 9.2 9.9 F Radius (cm) 20.933.5 13.2 18.7

Injection: Commentary

Kicker fields too high (0.5 T goal)
 Better in doublet: longer drift
 Use second kicker

Magnet aperture needed close to design

Except when F near septum
Outside "good field region," but not for long
FODO slightly better than doublet

Injection Doublet Commentary

F near septum requires too much aperture
 Want to avoid special magnets
 Symmetry breaking bad for FFAGs
 Doublet must either inject or extract wrong way
 Could inject vertically, extract horizontally
 Tunes near 0.25 for both these

Injection Doublet, D Near Septum

Injection Doublet, F Near Septum

Lattice Tune

Injection FODO Commentary

Injection and extraction with D near septum
 Kicker in first drift more effective

 Horizontal tune high
 Most phase advance in D
 First drift about 0.25 away

 Kickers half of length for doublet

Injection FODO, Kicker in First Drift

Injection FODO, Kicker in Second Drift

Tasks

Design simplistic at this point

- Compute longitudinal parameters more carefully
- Study performance under tracking
- Study less expensive option (fewer cavities)

Injection

- Study 2-kicker solutions
- Consider vertical injection with doublet

