## Front End Capture/Phase Rotation & Cooling Studies

David Neuffer

March 2008















- > Target is immersed in high field solenoid
- > Particles are trapped in Larmor orbits
  - B= 20T -> ~2T
  - Particles with  $p_{\perp} < 0.3 B_{sol}R_{sol}/2=0.225GeV/c$  are trapped
  - Focuses both + and particles
  - Drift, Bunch and phase-energy rotation



# Heutrino Factor

## Study2B June 2004 scenario (ISS)



Drift -110.7m Rotate Bunch (52m) Drift (110.7m) (51m Cool (to 100m) Bunch -51m  $\succ$  δ(1/β) =0.008 12 rf freq., 110MV F54a 10 • 330 MHz  $\rightarrow$  230MHz 320 8  $\blacktriangleright$   $\phi$ -E Rotate - 54m - (416MV total) 300 [ MV / m ] 280 ZHW • 15 rf freq.  $230 \rightarrow 202 \text{ MHz}$ 260 •  $P_1=280$ ,  $P_2=154 \delta N_V = 18.032$ 2. 240 Match and cool (80m) 220 110 120 130 140 150 160 170 0.75 m cells, 0.02m LiH 1000 > Captures both  $\mu^+$  and  $\mu^-$ 800 ~0.2 µ/(24 GeV p) End of Drift Ind of Buncher nd of rf-retato o (MeV/c) R (cm) nd of cooling COOLING LATTICE 600 SC 106 A/mm<sup>2</sup> 400 50 rf cavity 201.25 MHz 200 25 15.25 MV/m LiH1 cm С 250 300 100 150 200 350 400 450 0 125 150 Z (cm) €<sub>T</sub>-040127 – p. 1 50 100 ct (m) 25 75 0





- Fairly long system ~300m long (217 in B/R)
- Produces long trains of ~200 MHz bunches
  - ~80m long (~50 bunches)
  - Transverse cooling is ~2½ in x and y, no longitudinal cooling
  - Initial Cooling is relatively weak ? -
- Requires rf within magnetic fields
  - in current lattice, rf design; 15 MV/m at B = ~2T, 200MHz
  - MTA/MICE experiments to determine if practical

#### > For Collider (Palmer)

- Select peak 21 bunches
- Recombine after cooling
- ~1/2 lost





-30.00

### Shorter Bunch train example





-30

0.0000

40m



## Further iteration/optimization



- Match to 201.25 MHz cooling channel
- Reoptimize phase, frequency
   f = 201.25 MHz, φ = 30°,
- > Obtain shorter bunch train
- > Choose ~best 12 bunches
  - ~ 21 bunch train for Collider at N<sub>B</sub>= 18 case
  - ~12 bunches (~18m)
    - ~0.2 µ/p<sub>ref</sub> in best 12 bunches
       ~70%
    - Densest bunches are ~twice as dense as N<sub>B</sub> = 18 case

| Fi(rms) =1.1579<br>dE =0.0739 GeV<br>Xrms= 0.051081m | region 1<br>L = 219.621 m<br>Ebar = 0.1660GeV<br>Px,rms = 0.017211GeV/c | 22 2435 particles<br>2113 between 0.0800 and 0.2500GeV      | 0.5000 |
|------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------|--------|
|                                                      |                                                                         | <ul> <li>A. A. A</li></ul> |        |
| -30.00                                               |                                                                         | 0.00                                                        | 30.00  |







B=2T

#### ➢ Bunch- 31.5m

- $P_{ref,1}$ =280MeV/c,  $P_{ref,2}$ =154 MeV/c,  $\delta n_{rf}$  = 10
- V<sub>rf</sub> 0 to 15MV/m (0.5m rf, 0.25m drift) cells
- 360 MHz  $\rightarrow$  240MHz
- ≻ ¢-E Rotate 36m -
  - V<sub>rf</sub> = 15MV/m (0.5m rf, 0.25m drift) cells
  - δN<sub>V</sub> = 10.08 (240 -> 202 MHz)
- > Match and cool (80m)
  - Old ICOOL transverse match to ASOL (should redo)
  - P<sub>ref</sub> = 220MeV/c, f<sub>rf</sub> = 201.25 MHz
    - 0.75 m cells, 0.02m LiH, 0.5m rf, 16.00MV/m,  $\phi_{rf}$  =30°
  - Better cooling possible (H<sub>2</sub>, stronger focussing)



outrino Fact









- Reduce drift, buncher, rotator to get even shorter bunch train:
  - 217m ⇒ **86m**
  - 38m drift, 21m buncher, 27m rotator
  - Rf voltages 0-15MV/m, 15MV/m (×2/3)
- > Obtains ~0.23  $\mu/p$  in ref. acceptance
  - Slightly worse than previous ?
- 80+ m bunchtrain reduced to < 30m</p>
  - 18 bunch spacing dropped to 7







## Variation: v-Factory Cooling Channel

i(rms) =1.9264 L = 159.470 m

dE=0.1919 GeV Ebar= 0.2507Ge



Filme) =1 2788 | = 214 220 m

dE =0.1186 GeV Ebar = 0.1986Get

#### Cooling is limited:

- LiH absorber,  $\beta_{\perp}\cong$  0.8m
- $\epsilon_{\perp}$  from ~0.018 to ~0.0076m in ~80m
- $\epsilon_{eq} \cong 0.006 \text{m}$
- > Could be improved
  - $H_2$  Absorber (120A) or smaller  $\beta_{\perp}$
  - ε ⊥→ ~0.0055
  - $\epsilon_{eq} \cong 0.003 m$
  - ~20% more in acceptance
  - Less beam in halo







Neutrino Factor





## Discussion



#### > Guess: Optimum is $N_B \approx 10$

- (for both collider and v-Factory)
- As many µ/p as baseline in more compact bunch train
- Bunch train is ~1/2 that of Study 2B
- > Develop as **new baseline** parameter
  - Shorter buncher/rotator may be cheaper
    - 215m -> 125m, cost × ~0.8 ?? .... (150->120)
  - Better cooling is desirable
    - H<sub>2</sub> absorber and/or stronger focussing
- > Assumed for these scenarios:
  - ~15 MV/m at B  $\cong$  2T and f  $\cong$  200MHz is practical
  - Capture at ~150 to 300 MeV/c is optimal





- > Beam energy, bunch length, longitudinal acc.
  - Target variations
- > Quad channel
- > Rotator + cooler
- > Tilted solenoid Y. Alexhin
- > Rf/experiment comments
- > Discrete frequencies
  - More realistic geometries





#### Consider 8 GeV initial beam

- New beam from Mars simulation C. Yoshikawa
  - B=20T, Hg-jet target, 8-GeV p-beam~60cm long target region, ~MERITgeometry, 1 to 3 ns rms
- > Express yield in "E-independent" units
  - Z = Zetta = 10<sup>21</sup>
  - 0.2µ/(24GeV p)=1.042 Zµ/year-MW (ZyM)
    - (10<sup>21</sup>  $\mu$ / MW-year) , where year is 2×107 s
      - Study 2B is ~0.885 ZyM ... (or ZM =ZisMans?)





## ZyM-ology - ICOOL results



- Place 8GeV in N<sub>B</sub>=10 lattice
  - LiH lattice
  - Yield is 1.293 ZM (ε<sub>t</sub> < 0.03,ε<sub>L</sub><.2)(1ns)</li>
    - (0.0814 µ/p)
  - 1.213 ZyM @(ε<sub>t</sub> < 0.03, ε<sub>L</sub><.0.2)(3ns)</li>
- > Compare w/ 24 GeV N<sub>B</sub>=10
  - St2 ref. beam: 1.375 ZM (3ns)
  - St2A ref. beam: 1.156 ZM
- > This initial beam is ~12% "worse" than ST2 reference beam
  - but ~5% "better" than study 2A reference beam
- > Change to  $H_2$  cooling (~20% more ...)
  - ~1.59 ZM (ε<sub>t</sub> < 0.03, ε<sub>L</sub> < .2, 1ns) 8GeV (<u>1.51@3ns</u> beam)
- > ~Sensitive to longitudinal acceptance:
  - ~1.42 ZM(ε<sub>t</sub> < 0.03,ε<sub>L</sub> < .15,1ns)</li>



## Is 7.5cm adequate?



#### Mars simulation obtains:

- 0.38 π/8GeV proton forward
  - B=20T R=7.5cm
- 0.53 π/8GeV hit sides
- > Increase radius to 10cm:
  - ~0.54 π/8GeV proton forward
  - ~0.37 π/8GeV hit sides
- > But many larger radius π/μ are not accepted:
  - 1.39 ZM→1.51 ZM (?)
    - 42%more initial; but only 9% more in acceptance cuts





17





- > Study 2B discretization exercise:
  - Buncher : 12 rf frequencies; Rotator 15 rf freq.
- > Buncher 31.5m 42 cavities (× 1/3 = 14)
  - **362.15**, **348.52**, **335.87**, **324.12**, **313.15**, **302.91**, **293.31**,
  - **284.31, 275.84, 267.86, 260.33, 253.21, 246.47, 240.08**
- > Rotator 36m -48 cavities (× 1/3 = 16)
  - 235.95, 230.62, 225.97, 221.91, 218.36, 215.26, 212.57, 210.25, 208.26, 206.58, 205.19, 204.07, 203.20, 202.58, 202.2,202.0
- > As for study 2B, simulate and compare
  - ~10% worse (not yet simulated, however)



## Rf cavity comments

- > Frequencies from 360 to 200 MHz
  - 5 to 15 MV/m to ? In B = ~2T
- > Normal-conducting Short-pulse rf
  - 15 to 60 Hz
- Simulation cavity length 0.5m-??
- > Be windows? "gas-filled" ? options
- > NEED R&D to determine E<sub>cf</sub> /B limits
  - 200, 800 MHz,



Figure 8.6: Section of one cavity.











- Add gas + higher gradient to obtain cooling within rotator
- > Rotator is 54m;
  - Need ~5MeV/m cooling
  - 150atm equivalent 295°K gas
  - Alternating Solenoid lattice in buncher/rotator
- > 24MV/m rf(0.5m cavities)
- Gas-filled cavities may enable higher gradient
- > ~0.22 $\mu$ /p at  $\epsilon_T$  < 0.03m
  - ~0.12μ/p at ε<sub>T</sub> < 0.015m</li>
  - $\epsilon_{\perp}$  cools to ~0.008m
- > About equal to Study 2A





## Quad cooling channel for front end



- w. A. Poklonsky
- > Use 1.5m long cell FODO
  - 60° to 90°/cell at  $P_{\mu}$  215MeV/c
  - $\beta_{max}$  = 2.6m;  $\beta_{min}$ =0.9 to 0.6m
  - B' = 4 to 6 T/m
- > Advantages:
  - No large magnetic fields along the axis
  - Quads much cheaper ?
  - No beam angular momentum effects
- > Disadvantages
  - No low β\* region
  - Relatively weak focusing
- H<sub>2</sub>-cooled example as good as Study2B LiH case











- Tilt solenoids to insert dispersion
  - ~6cm ?
- Allows wedge absorbers
   to cool longitudinally
- > If wide aperture, oscillations of both µ<sup>+</sup> and µ<sup>-</sup> particles can be within the channel
- Try to simulate in front end





## Conclusions



- > Can use high-frequency capture to obtain bunch train for v-Factory  $\rightarrow \mu^+ \text{-} \mu^-$  collider
  - (~10 to 14 bunches long at 200MHz )
  - Recombine after cooling for collider mode

#### > Questions

- Is ~200 MHz optimal?
- ~15 MV/m at B  $\cong$  2T and f  $\cong$  200MHz is OK?
- Is ~12 bunches OK for Collider scenario

#### > To Do:

Turn into detailed design for IDS ??