

MuCool Program Overview

Muon Cooling R&D Alan Bross

Alan Bross

NFMCC Meeting

March 2008

Outline

- MuCool Overview
 - Collaboration
 - MuCool Test Area
 - Program Synopsis

- 805 MHz RF Program
- 201 MHz RF Program
- RF Theory and new ideas in SCRF
- LiH Absorber Program
- Status of MICE Production
 201 MHz cavities

AB

- D. Huang
- A. Moretti
- J. Norem

C.M. Lei D. Li

Mission

- Design, prototype and test all cooling channel components
 - ◆ 201 MHz RF Cavities, LH₂ absorbers, SC solenoids
- Support MICE (cooling demonstration experiment)
- Perform high beam-power engineering test of cooling section components
- Consists of 10 institutions from the US, UK and Japan

Alan Bross

MuCool Test Area

Alan Bross

NFMCC Meeting

March 2008

test of

Alan Bross

NFMCC Meeting

March 2008

MuCool Phase II

Cryo-Infrastructure Installation/Commission Beam Line Installation/Commission

Alan Bross

NFMCC Meeting

March 2008

MTA Cryo-Infrastructure

• MTA Reconfiguration

- Commission Cryo-Plan (April/May 2008)
- Install Transfer Line system
- Raise Equipment to beam height
- New shield wall
- Working on Project Plan
 - $\bullet~\approx$ 3 month effort with adequate technician resources
 - ▲ Need 5 technicians full time (estimate is about 2000 hours)
 - ▲ Plus 5 weeks of a welder
 - ▲ Plus \$50k in M&S (Does not include rerouting of RF power)
- Need to complete before the 2008 Accelerator Shutdown
 - But shutdown delayed until at least September (maybe March 09)

Existing Dewar-Fed Cryogen System

• All of this is removed

New (simpler) shield wall

- Will allow for easier pit access to hall
- More shielding needed for beam operations in MTA Hall

NFMCC Meeting

MTA - Refrigerator Room

Alan Bross

NFMCC Meeting

March 2008

Transfer Line System

Alan Bross

NFMCC Meeting

March 2008

Transfer Line System

Alan Bross

NFMCC Meeting

March 2008

Alan Bross

NFMCC Meeting

March 2008

NFMCC Meeting

March 2008

Alan Bross

MTA Beam Line Group

MTA Beam Line as Installed

First Beam Experiments

- Currently 5T magnet and 201 cavity on floor (below beam ht.)
- We will raise equipment to beam height
 - Also flip orientation of 201 MHz cavity and magnet

• Goal

 First Beam Experiment (Muon's Inc HP RF Test Cell) by end of 2008

Phase II - Configuration

NFMCC Meeting

MTA Beam Commissioning

- Beam Line commissioning to first beam stop (Linac side of shield wall) may start as early as June
- Still doing radiation shielding assessments
 - Rerouting RF Power required
 - Final configuration for this still being developed
- Will start at low intensity
 - Need Shielding upgrade (over-burden) for high-intensity

RF Cavity R and D

ANL/FNAL/IIT/LBNL/UMiss

Alan Bross

NFMCC Meeting

March 2008

Fundamental Focus Of RF R&D

- Study the limits on Accelerating Gradient in NCRF cavities in magnetic field
- We believe that the behavior of RF systems in general can be accurately described (predicted) by universal curves
- This applies to all accelerating structures

805 MHz

Safe Operating Gradient Limit vs Magnetic Field Level at Window for the three different Coil modes 45 (Opposing) 40 4040 Red 37.66 3533.9 35 Gradient in MV/m (Single Coil) 28.5 25.75 • 25.5 23~255 30 Black 25 1.59 20 16.5 15 15 13.5 (Solenoid) 10 Yellow 5 0 2 3 n 5 Peak Magnetic Field in T at the Window

Data seem to follow universal curve

 Max stable gradient degrades quickly with B field

Remeasured

- Same results
- Does not condition

NFMCC Meeting

Next 805 MHz study - Buttons

- Button test
 - Evaluate various materials and coatings
 - Quick Change over

TiN Coated Cu - After Running

Alan Bross

NFMCC Meeting

March 2008

RF R&D - 201 MHz Cavity Design

The 201 MHz Cavity - 19 MV/m Gradient Achieved
 In low (few hundred 6) B field. Still no breakdown. Limited by available power

Alan Bross

NFMCC Meeting

March 2008

201 MHz Cavity Operation in B Field

NFMCC Meeting

201 in Position

We have now moved 201 as close as possible to 5T solenoid Can obtain ≈ 1.5T on near window of 201

Alan Bross

NFMCC Meeting

LiH Absorber R&D

- Only 1 vendor was found that would cast LiH
 - After some reflection (and some input from Chemists from Argonne Lab), the vendor decided casting LiH was too dangerous (production of H₂ gas)
- Made a Third Attempt to work with Y12 (Oakridge)
 - Found the engineer in charge of their LiH work and he suggested that they press (Hot 150C, Isostatic (30,000 psi) a "loaf" and machine parts to our specification from the loaf
 - ▲ They have achieved 98% theoretical density using this technique
 - ▲ They are doing R&D on casting LiH for their internal programs, but do not recommend it for our application.
 - It is very tricky due to the high temperature (700C +) and the large (30%) shrinkage on cooling
- We are in the process of setting up a contract with them to make a disk for temperature studies and 1 or 2 disks for MICE
 - Note: The Li in their LiH is ⁶Li
 - ▲ For the mass we will receive, our parts will be considered Nuclear Material
 - PAPERWORK!!!

805 MHz RF studies – Buttons (with and without B field)

- ▲ Materials tests
- ▲ Surface treatment (HP Wash + EP (from UK), ALD (Argonne)
- ▲ E X B study
- 201 MHz RF
 - Continue B field studies
- Begin thermal and mechanical tests on HIP LiH absorber prototypes
- Complete MTA cryo infrastructure installation and commission system
- Commission Beam Line
- First tests with Beam Complete by January 09
 - Test of HP H₂ RF test cell with beam

