

Concepts Beyond the Neutrino Factory Baseline Design

Alan Bross, Malcolm Ellis, Steve Geer, Olga Mena, Silvia Pascoli

Neutrino Factory - IDS Starting Point

Proton Driver
4 MW, 2 ns bunch
Target, Capture &
Phase Rotation
Hg Jet
200 MHz train

Cooling

- + 30 pmm (\perp)
- 150 pmm (L)
- Acceleration
 - 103 MeV \rightarrow 25 GeV
- Storage/Decay ring

Muon Complex Evolution

Heutrino Factor

Extension of Analysis with estimated TADS σ_E

energy $\rightarrow 0.5$ to 1.5 GeV (and go to E_v threshold of 0.5 GeV)

🛟 Fermilab

Alan Bross

NFMCC Meeting

March 2008

But, Can the Physics Goals be Accomplished with a LE-NF?

• Up to now, the NFMCC has focused on neutrino factories with energies of 20-50 GeV

• The collaboration has not studied lower energy neutrino factories because, until recently, the proposed NF detectors have had muon energy thresholds (for measuring wrong-sign muons with adequate background rejection) of a few GeV, which imposes a minimum threshold on the desirable neutrino energy, and hence a minimum NF energy $\rightarrow \sim 25$ GeV (current IDS baseline).

• During the ISS there was progress on understanding how to reduce the detector thresholds for measuring wrong-sign muons ... so we can now consider lower energy neutrino factories.

🛟 Fermilab

Fine-Resolution Totally Active Segmented Detector

Simulation of a Totally Active Scintillating Detector (TASD) using Nova and Minerva concepts with Geant4

- 3333 Modules (X and Y plane)
- Each plane contains 1000 slabs
- Total: 6.7M channels

- Momenta between 100 MeV/c to 15 GeV/c
- Magnetic field considered: 0.5 T
- Reconstructed position resolution ~ 4.5 mm

TASD Performance

v Event Reconstruction Efficiency

TASD - NuMu CC Events

Muon charge mis-ID rate

Momentum resolution excellent

- Neutrino Event energy reconstruction from tracking
- EM component from hit counting possibly
- Simplifies electronics
 - No calibration needed
 - Hit efficiency is only consideration

4 GeV NF Physics Study

- Baseline: 1480km (FNAL-Henderson)
 - Also did Homestake to Fermilab
- Choose NF Energy ~ 4 GeV (Actually 4.12 GeV). This is motivated by the realization that for baselines O(1000km), if θ_{13} is not very small, the oscillation pattern is extremely rich below ~4 GeV.
- Will divide the simulated data into 3 energy bins, and fit the wrong-sign muon rates for each bin with positive- & negative-muons stored in the ring (6 rates to fit). Can also fit 6 right-sign muon rates.
- Energy bins: $E_V = [0.8, 1.5], [1.5, 3.5], [3.5, 4.12] GeV.$
- Bins chosen to optimize ability to resolve degenerate solutions.

IPPP/06/85; DCPT/06/170; Roma-TH-1443; FERMILAB-PUB-07-021-E (Geer, Mena, Pascoli)

Input Parameters

•NF performance:

- BASIC: (5 years) × (3 × 10²⁰ useful decays/yr) × (2 signs) × (20Kt fid. Mass) = 3×10²² Kt-decays ×(2 signs)
- BETTER: (10 years) × (5 × 10²⁰ useful decays/yr) × (2 signs) × (20Kt fid. Mass) = 1×10²³ Kt-decays ×(2 signs)

•Detector efficiency ϵ =0 for E_n < 0.8 GeV; ϵ =1 for E_n > 0.8 GeV

•Do not explicitly implement energy resolutions or cross-section uncertainties but include a 2% systematic uncertainty in the covariance matrix.

Resolving Degeneracies

Solutions corresponding to correct sign ∆m² 90%, 95%, 99% CL Contours

Illustration of how it works:

• L=1480 Km • Simulate θ_{13} =3°, δ =0 then fit $v_e \rightarrow v_{\mu} \& \overline{v}_e \rightarrow \overline{v}_{\mu}$ rates • Fits for 3 neutrino energy bins: Dark: 0.8 – 1.5 GeV Cyan: 1.5 – 3.5 GeV Magenta: >3.5 GeV

Each fit yields one correct & one additional ("intrinsic degeneracy") solution ... but the additional solutions for the 3 bins do not overlap → Unique Solution !

Mass Hierarchy

L=1480 Km

Detector R&D Issues

There are 3 components to this detector and their respective R&D

- Magnet
- Scintillator Production
- Photo-detector and electronics

New Idea \mathbf{O}

- VLHC SC **Transmission** Line
 - ▲ Technically proven
 - ▲ Might actually be affordable

- 1 m iron wall thickness.
- ~2.4 T peak field in the iron. Good field uniformity

NFMCC Meeting

March 2008

Am¹

Wb

V m

Sm

Am

100

Heutrino Factor

Superconducting Transmission Line makes this concept possible *(affordable)*

 SCTL not a "concept" – prototyped, tested and costed for the VLHC Project at Fermilab

SCTL Parameters

PARAMETER	UNIT –	DESIGN			
		No iron	V	Vith iron	
I _{solenoid}	MA	7.5			
N _{turns} /solenoid		150			
I _{turn}	kA		50	100 kA op dem	onstrated
B _{average} in XZ	Т	0.562		0.579	
W _{total}	GJ	3.83		3.95	
L _{total}	Н	3.06		3.16	
F _r maximum	kN/m	15.66		15.67	
F _x maximum	kN/m	48.05		39.57	
\$1	1 000/m =	⇒ \$50M			

|B| in XZ cross-section

NFMCC Meeting

March 2008

Alan Bross

🛟 Fermilab

R&D - VLHC and cable design

Alan Bross

Pipetron type cable

- Needs modification to provide long length (~5-7 km) and flexibility (bending diameter 15 m)
- Solenoid Strong-Back
- Assembly procedure

New support structure and cable - Concept

Structure:

- Cable vacuum shell is now part of the solenoid support structure
- LN shield is fabricated and installed independently:
- Two half-shells with LN pipes
- Super-insulation,
- Supports
- Cable installed inside the LN shield:
- Thick LHe pipe with SC and Cu wires wound outside
- Thick Al or Cu tape (mechanical support and additional stabilizer) wrapped over SC/Cu wires
- Super-insulation
- Flexible (+/-2 mm dynamic range) supports

- The SCTL concept has been prototyped, tested and costed for the VLHC project
- Application for 15m diameter solenoids is different, however
 - Cost appears to be manageable (<\$100-150M)
- R&D
 - Optimization of the SCTF for solenoid application
 - Engineering of fabrication process
 - Engineering of support structure
- R&D Program
 - Will discuss in session on TASD prototyping

Scintillator

- There are really no technical show-stoppers here. It is just a matter of cost reduction
- Relatively small R&D Program (\$250k)
 - Extrusion Die design to increase production through-put and efficiency
 - Extrusion Die Design to allow for co-extrusion of WLS fiber with scintillator profile
 - ▲ Has already been done successfully in tests on post-cladding Kuraray fiber with various polymers.
 - These were thin (100-300 $\mu\text{m}),$ however

- Here the R&D is already occurring all over the globe
- Silicon-PM, aka MPPD, aka MRSD
 - Hamamatsu, RMD
 - Potential to lower the channel cost to <\$10/ch (Target \$5)

Outlook

- A Low-Energy Neutrino Factory (coupled with the right detector) gives excellent capability in exploring the full neutrino mixing matrix and measure leptonic CP violation
- A finely segmented TASD is quite possible the right analysis tool for a Low-Energy NF
 - Much more simulation/study needs to be done, but the initial results are promising
 - Detector R&D program is well-defined
 - ▲ Magnet \$2-5M
 - ▲ Scintillator \$250k
 - A Photo-detector wait and see

Detector Cost Magnet - \$150M Scintillator & Fiber - \$150M PD & readout - \$100M

- A Low-Energy Neutrino Factory (4 GeV) is certainly cheaper than a 20 GeV facility.
- Plus with proper planning a Low-Energy Neutrino Factory might be upgradeable to higher energy