

Progress on Linacs and RLAs for the IDS Baseline

Alex Bogacz

Thomas Jefferson National Accelerator Facility

Alex Bogacz

Neutrino Factory – ISS/IDS Baseline

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

- Linear Pre-accelerator (244 MeV to 900 MeV)
- RLA I 4.5 pass, 0.6 GeV/pass, (0.9 GeV to 3.6 GeV)
- RLA II 4.5 pass, 2 GeV/pass (3.6 GeV to 12.6 GeV)
- Non scaling FFAG (12.6 GeV to 25 GeV)

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Acceleration Scheme – IDS Goals

Engineering design foundation

- Define beamlines/lattices for all components
- Design lattices for transfer lines between the components
- Resolve physical interferences, beamline crossings etc ⇒ Floor Coordinates
- Carry out end-to-end tracking study Machine Acceptance
- Engineer individual active elements (magnets and RF cryo modules)

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Towards Engineering Design Foundation

Tue Jan 30 02:43:58 2007 Op Tue Jan 30 02:46:05 2007 OptiM - MAIN: - D:\ELIC\Figt Tue Jan 30 02:50:37 2007 OptiM - MAIN: - D:\ELIC\Figt Tue Jan 30 02:44:33 2007 OptiM

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Arcs 'Crossing' - Vertical Bypass

Wed Mar 19 02:54:06 2008 OptiM - MAIN: - D:\IDS\Arcs\vert_crossing.opt

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

ISS/IDS		€ _{rms}	Α = (2.5) ² ε
normalized emittance: ϵ_x/ϵ_y	mm∙rad	4.8	30
longitudinal emittance: ϵ_{ℓ}	mm	27	150
$(\epsilon_{\ell} = \sigma_{\Delta p} \sigma_z / m_{\mu} c)$			
momentum spread: $\sigma_{\Delta p/p}$		0.07	±0.17
bunch length: σ_z	mm	176	± 442

Thomas Jefferson National Accelerator Facility

Alex Bogacz

Pre-accelerator – different style cryo-modules

	Short	Medium	Long
Number of periods	6	8	11
Total length of one period	3 m	5 m	8 m
Number of cavities per period	1	1	2
Number of cells per cavity	1	2	2
Cavity accelerating gradient	15 MV/m	17 MV/m	17 MV/m
Real-estate gradient	3.72 MV/m	5.06 MV/m	6.33 MV/m
Aperture in cavities (2a)	460 mm	460 mm	460 mm
Aperture in solenoids (2a)	460 mm	460 mm	460 mm
Solenoid length	1 m	1 m	1 m
Solenoid maximum field	1.1 T	1.4 T	2.5 T

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Linear Pre-accelerator – 244 MeV to 909 MeV

Tue Feb 12 12:47:13 2008 OptiM - MAIN: - M:\casa\acc_phys\bogacz\IDS\PreLinac\Linac_sol.opt

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Introduction of synchrotron motion in the linac

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Linear Pre-accelerator – Longitudinal dynamics

Tue Feb 12 12:50:16 2008 OptiM - MAIN: - M:\casa\acc_phys\bogacz\IDS\PreLinac\Linac_sol.opt

Injection double-chicane

Tue Mar 18 13:50:11 2008 OptiM - MAIN: - D:\IDS\Arcs\double_chicane3.opt

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Pre-accelerator-Chicane-Linac Matching

OptiM - MAIN: - D:\IDS\PreLinac\Linac_sol_chicane.opt Tue Mar 18 22:12:16 2008

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

RLA I Linac – Longitudinal Dynamics

Tue Mar 18 22:56:19 2008 OptiM - MAIN: - D:\IDS\Linacs\Linac05.opt

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Linear Pre-accelerator + RLA complex

Thomas Jefferson National Accelerator Facility

Alex Bogacz

RLA requirements

- Simultaneous acceleration of both $\mu^+ \mu^-$ species
- Manageable orbit separation at recirculation arcs
- Beam dynamics challenges RLA Optics solutions
 - Phase slippage in the linacs
 - Multi-pass linac optics
 - Orbit separation linac ends
 - Droplet return arc compact lattice design

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

- 'Dogbone' (Single Linac) RLA has advantages over the Double-Linac RLA 'Racetrack'
 - better orbit separation at linac's end ~ energy difference between consecutive passes ($2\Delta E$)
 - allows both charges to traverse the Linac in the same direction (more uniform focusing profile
 - the droplets can be reduced in size according to the required energy
- FODO Optics is superior to Triplet focusing more passes are possible with the FODO scheme

Thomas Jefferson National Accelerator Facility

Alex Bogacz

Phase slippage in the linac

 Phase slippage of a semi-relativistic muon beam injected with the initial energy E₀ and accelerated by ΔE in a linac of length, L – assuming uniformly spaced RF cavities phased for a speed-of-light particle

where

 The injection energy, E₀, needs to be chosen, so that a tolerable level of the RF phases slippage along the main linac can be maintained (~40 deg).

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Phase slippage in the RLA linac

RF phase slippage along the multi-pass linacs; initial 'gang phases' for each pass were chosen for the optimum longitudinal bunch compression in each linac-Arc segment

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Multi-pass Linac Optics

- The focusing profile along the linac (quadrupole gradients) need to be set so that one can transport multiple pass beams within a vast energy range (provide adequate transverse focusing for given aperture).
- The beam is traversing the linac in both directions one chooses a 'flat focusing profile' (Bob Palmer) for the entire linac: e.g. the quads in all cells are set to the same gradient, corresponding to 90 deg. phase advance per cell determined for the lowest energy (injection) – no quad scaling with energy
- The requirement of simultaneous acceleration of both µ[±] species imposes mirror symmetry of the 'droplet' Arcs optics (the two species move in the opposite directions through the Arcs). This in turn puts a constraint on the exit/entrance Twiss functions for the two consecutive linac passes:

$$\beta^{out}_{n} = \beta^{in}_{n+1}$$
 and $\alpha^{out}_{n} = -\alpha^{in}_{n+1}$

where n = 0, 1, 2.. is the pass index

Jefferson Lab

Thomas Jefferson National Accelerator Facility

NFMCC Meeting, Fermilab, March 19, 2008

FODO - 'flat focusing' linac profile

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

FODO - 'flat focusing' linac profile

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

NFMCC Meeting, Fermilab, March 19, 2008

FODO - 'flat focusing' linac profile

OptiM - MAIN: - D:\IDS\Linacs\Linac4.opt Tue Mar 18 00:15:06 2008

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Mirror-symmetric 'Droplet' Arc – Optics

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

- IDS Goals laying engineering design foundation
 - Define beamlines/lattices for all components
 - Design lattices for transfer lines between the components
 - Resolve physical interferences, beamline crossings etc \Rightarrow Floor Coordinates
- Carry out end-to-end tracking study \Rightarrow Machine Acceptance
- Implementing chromatic corrections with sextupoles
- Engineer individual active elements (magnets and RF cryo modules)
- Element count and costing

Thomas Jefferson National Accelerator Facility

Alex Bogacz