

Quench Protection for Very High Field Magnets using HTS Conductors

Stephen Kahn Muons Inc.NFMCC UCLA Meeting 1 February 2007

1 Feb 2007 S. Kahn -- Quench Protection 1

Muons, Inc. Innovation in Research HTS Magnet Protection—Why is this different from normal Quench Protection?

- • In our scenario for a muon collider we (casually) use very high field magnets that can not be achieved using normal Niobium superconductors.
	- The NbTi alloy is a ductile material that has reasonably decent mechanical properties.
		- Reasonable current to 7T at 4.2 K
	- Nb Nb₃Sn superconductor is a more brittle material. Fields to ~17 T.
	- It has been demonstrated that HTS conductor can carry significant current at fields as high as 45 T
		- HTS conductor is very brittle. There is a major concern about damage from strain.

Recent Model of 50 T Solenoid (LTSW06)

1 Feb 2007 S. Kahn -- Quench Protection 3

Parameters

Inc.

Two Concerns with HTS Magnets

- \bullet One concern is how to remove this large amount of energy from the magnet in case of an incident.
- The second concern is that the quench propagation velocity for HTS is very slow. The superconductor can heat up significantly before the quench energy can spread.
	- This can cause local irreversible damage to the magnet.

Conductor and Insulator Description

- \bullet The conductor is BSCCO 2223 which is 30% HTS filaments and 70% Ag matrix and Ag-Mg sheath (for strength). We assume the matrix/sheath is all Ag for the calculation.
- \bullet The insulator is assumed to be the Stainless Steel interleaving. A minimum thickness (0.07 mm) is used since we are describing the inner layers.
	- In practice we will likely add a ceramic coating or kapton wrap as insulator. This will inhibit the transverse quench propagation.

- • We need the material properties of all the components of the conductor and insulation.
- • The important properties are
	- Heat capacitance (Specific Heat)
	- Resistivity
	- Thermal conductance
		- Obtained from resistivity with Wiedemann-Frantz law.
- • C_V and ρ are parameterized as in up to four temperature ranges:

$$
\rho = A \cdot T^a + B \cdot T^b
$$

$$
C_V = D \cdot T^d + E \cdot T^e
$$

- • We need the material properties of all the components of the conductor and insulation.
- • The important properties are
	- Heat capacitance (Specific Heat)
	- Resistivity
	- Thermal conductance
		- • Obtained from resistivity with Wiedemann-Frantz law.
- • C_V and ρ are parameterized as in up to four temperature ranges:

$$
\rho = A \cdot T^a + B \cdot T^b
$$

$$
C_V = D \cdot T^d + E \cdot T^e
$$

Measurements on BSCCO 2223 Conductor

Data from EHTS Bi-2223 Data Sheets.

Measurements were performed at GHMFL, France.

Used only high field

part of data to

Critical Current Measurements

- • Measurements of critical current as a function of B and temperature are from EHTS (another provider of BSCCO 2223).
- • The measured data is used to determine parameters of the following equation:

1 Feb 2007 S. Kahn -- Quench Protection 10 This formula is used for NbTi and $Nb₃Sn$. Is it valid for HTS??

Quench Propagation Velocity

- \bullet Quench protection calculations depend on the *quench propagation velocity.*
- \bullet The quench propagation velocity can be calculated from the formula below.
	- This is what I did.
	- Experience for NbTi shows that the formula does not reproduce the measurements.
		- Typically the experimentally determined value is used.
			- We need to measure this for HTS.
	- –One of the weaknesses of the velocity calculation is that the specific heat (ρC_V) varies as $T³$ and is rapidly varying at the quench front.

Lorentz Number

1 Feb 2007 S. Kahn -- Quench Protection 12

Muons, Wiring configuration & sample homogeneity

Innova

1 Feb 2007 S. Kahn -- Quench Protection 13

Neutrino Fact

1 Feb 2007 S. Kahn -- Quench Protection 14

Comments on Quench Velocity Measurements

- \bullet The quench propagation velocity in this experiment is \sim 4 cm/sec. In NbTi it is approximately 1 m/sec.
	- If a quench occurs and the heat can not be dissipated, the local area will heat up to a very high temperature. It can be destructive.
- \bullet The slow propagation velocity is largely due to the fact that at 4.2° K most of the SC is far away from the critical temperature.
	- The closer we are to the critical condition, the faster the quench velocity.
- \bullet Restated: A conservative design with a large safety factor built-in against quenches occurring could be self-destructive if a quench does occur.
- \bullet The typical approach used with NbTi and $Nb₃Sn$ of firing heaters to make the magnet go normal faster *won't work.*
	- It takes too much external energy to make the magnet go normal and would likely increase the destruction.

Preliminary Calculations

- \bullet I am presenting some preliminary calculations using the quench calculation program QUENCH.
	- This program was written by Martin Wilson at Rutherford Lab in the 1970's. The current version of the program is marketed by B. Hassenzahl of Advanced Energy Analysis. BNL has a license to use it.
- \bullet There are other codes available:
	- QUENCHPRO at FNAL Technical Division.
	- SPQR from CERN.
	- QLASA from INFN-Milano.
	- QUABAR.
	- Vector Fields is developing a quench propagation code.
		- Being beta tested now.

Circuit for Quench Energy Extraction

- • Quench circuit components:
	- – Solenoid represented by inductance L. Also there is an internal resistance (not shown) which is about 10 ohm.
	- – R_{PR} represents the energy extraction resistance. This will take the large share of quench energy.
	- – Switch will be activated by quench detection system.
		- Could even be a diode system.
	- $-$ R_{EXT} represents the resistance associated to leads, power supply, etc.

Circuit Parameters

- \bullet QUENCH treats the whole magnet. It does not provide for segmenting the magnet into separate coupled systems.
	- This means that the current has the same time-dependence throughout.
	- $-$ We shall ignore the Nb₃Sn outer coils.
		- We assume that they are sufficiently away from critical that they won't quench. Also that the $Nb₃Sn$ coils will not affect the HTS (this may be a bad assumption).
	- The total inductance can be calculated from the stored energy:
		- U= $\frac{1}{2}LI^2$ where U=66 Mega-Joules and I=129 amps is the single turn current.
		- There are 672 layers \times 250 turns/layer = 167821 turns.
		- This gives 8000 henrys (big!)
	- The resistance associated with 61 km of Ag is 8 ohms.
- \bullet We certainly will need to trigger an external resistance into the circuit with a quench is detected.

Quench Simulation

- \bullet We want to ramp the magnet down with a single time dependence. (This is all that *Quench* can do) we would like to segment the magnet into separate circuits with diodes.
	- This provides greater sensitivity to quench incidents.
	- This will prevent unreasonably large voltages across external resistances.
- \bullet Each sub-circuit consists of two adjacent conductor layers.
	- Quench detection circuitry can be put on one end of the magnet.
	- IGBT switches to include external resistance circuit when the quench is detected.

High Voltage Avoidance during Active Ramp Down

Muons, Inc. Innovation Quench Parameters as a Function of External Resistance

•The figures show the following parameters as a function of an external resistance forenergy extraction.

- •Maximum temperature on conductor
- •Time constant for decay

•External voltage on external resistance •Note that as one increases the external resistance one decreases temperature, but increases the external voltage.

Quench Detection

- • Typical quench detection circuits used for LHC and the 25 T NHMFL Solenoid(with HTS insert) trigger at 200-250 mV.
	- This corresponds to ~4 cm of "Ag resistance" or 1 sec detection time.
	- $-$ A "back of the envelop" calculation of ΔT gives ~150°K.
		- Caveat: C_v varies as T^3 so one needs to do a proper integration over time which can change this significantly.
	- We would like to keep $\Delta T < 200^{\circ}K$ if possible to avoid potential damage to the conductor (from micro-cracking)
	- If we can detect a quench at 0.1 sec (trigger at 10-25 mV) we would gain significantly.
		- We anticipate that the time constant to remove the field to be \sim 1-10 sec.

An Alternate Approach to Remove Energy

- • When a quench occurs, the detection circuit triggers *some* of the dump resistors.
- \bullet Energy is transferred to adjacent coils inductively such that they will induce a quench in those coils.
- \bullet The dump resistors of the remaining coils are turned on.
- \bullet This approach would spread the quench throughout the magnet without adding energy from external sources as heaters. This should permit a faster rampdown of the magnet in a controlled manner.

- \bullet Muons Inc has submitted an SBIR proposal with Fermilab to study protection of HTS magnets.
	- We would like to setup a test station to study quench detection of HTS magnets.
	- We would like to investigate techniques to detect quenches in \sim 10 ms with amplitudes of ~ 10 mV.
- \bullet It is clear from this initial calculation that some parameters are not well known. We should try to measure them.
	- Electrical resistivity and heat capacity of HTS conductor as a function of temperature. This should be done above critical current.
	- Same measurements of Silver as a control.
	- $-$ Determine $I_c(B)$ at high field. Verify that the critical current relation that we used (which was developed for NbTi, Nb₃Sn) works for HTS.
	- Measure the quench propagation velocity. This is important.