Low-Energy Ionization "Cooling"

David Neuffer Fermilab

- Low-energy cooling-protons
- ions and "beta-beams"
- Low-energy cooling muons
 - emittance exchange

$$\frac{\mathrm{d}\varepsilon_{\mathrm{N}}}{\mathrm{d}s} = -\frac{1}{\beta^{2}\mathrm{E}}\frac{\mathrm{d}\mathrm{E}}{\mathrm{d}s}\varepsilon_{\mathrm{N}} + \frac{\beta\gamma\beta_{\perp}}{2}\frac{\mathrm{d}\left\langle\theta_{\mathrm{rms}}^{2}\right\rangle}{\mathrm{d}s} \qquad \qquad \frac{d\left\langle\theta_{\mathrm{rms}}^{2}\right\rangle}{\mathrm{d}s} = \frac{z^{2}E_{s}^{2}}{3\beta^{2}c^{2}p_{\mu}^{2}L_{R}}$$

- Cooling equations are same as used for muons
 - mass = a m_p, charge = z e
 - Some formulae may be inaccurate for small $\beta = v/c$
 - Add heating through nuclear interactions
 - Ionization/recombination should be included
- For small β, longitudinal dE/dx heating is large
 - At β =0.1, g_L = -1.64, Σ_{g} = 0.36
 - Coupling only with x cannot obtain damping in both x and z

Low-energy "cooling" of ions

- Ionization cooling of protons/ ions has been unattractive because nuclear reaction rate is competitive with energy-loss cooling rate
 - And other cooling methods are available
- But can have some value if the goal is beam storage to obtain nuclear reactions
 - Absorber is also nuclear interaction medium
 - Y. Mori neutron beam source
 - NIM paper
 - C. Rubbia, Ferrari, Kadi, Vlachoudis source of ions for β-beams

Miscellaneous Cooling equations

$$\frac{d\mathbf{E}}{d\mathbf{s}} = 4\pi \mathbf{N}_{\mathrm{A}} \rho \, \mathbf{r}_{\mathrm{e}}^{2} \mathbf{m}_{\mathrm{e}} \mathbf{c}^{2} \frac{Zz^{2}}{A} \left[\frac{1}{\beta^{2}} \ln \left(\frac{2m_{\mathrm{e}} \mathbf{c}^{2} \gamma^{2} \beta^{2}}{\mathbf{I}(\mathbf{Z})} \right)^{-1} \cdot \frac{\delta}{2\beta^{2}} \right] \qquad \mathbf{\epsilon}_{\mathbf{N}, \mathbf{eq}} = \frac{\mathbf{z}^{2} \boldsymbol{\beta}_{\perp} \mathbf{E}_{\mathrm{s}}^{2}}{2 \mathbf{g}_{\mathrm{s}} \boldsymbol{\beta} \, \mathbf{am}_{\mathrm{p}} \mathbf{c}^{2} \mathbf{L}_{\mathrm{s}} \frac{d\mathbf{E}_{\mathrm{s}, \mathrm{s}}}{d\mathbf{s}}}{\frac{d\sigma_{\mathrm{e}}^{2}}{d\mathbf{s}}} = -2 \frac{g_{\mathrm{L}} \frac{d\mathbf{E}}{d\mathbf{s}}}{\beta^{2} \mathbf{E}} \sigma_{\mathrm{E}}^{2} + 4\pi \left(\mathbf{r}_{\mathrm{e}} \mathbf{m}_{\mathrm{e}} \mathbf{c}^{2} \right)^{2} z^{2} \mathbf{n}_{\mathrm{e}} \gamma^{2} \left(1 - \frac{\beta^{2}}{2} \right) \qquad \sigma_{E, eq}^{2} = \frac{(m_{e} c^{2})(am_{e} c^{2})\beta^{4} \gamma^{3}}{2 g_{L} \ln[1]} \left(1 - \frac{\beta^{2}}{2} \right)$$
$$\frac{d\mathbf{\epsilon}_{\mathrm{N}}}{d\mathbf{s}} = -\frac{1}{\mathrm{P}} \frac{d\mathbf{P}}{d\mathbf{s}} \boldsymbol{\epsilon}_{\mathrm{N}} + \frac{\beta_{\perp}}{2} \frac{z^{2} \mathbf{E}_{\mathrm{s}}^{2}}{\beta^{2} \mathrm{mc} \, \mathrm{PL}_{\mathrm{R}}} \qquad \ln[1] = \left[\ln \left(\frac{2m_{e} c^{2} \gamma^{2} \beta^{2}}{\mathbf{I}(\mathbf{Z})} \right)^{-\beta^{2}} \right]$$
$$\mathbf{For small} \boldsymbol{\beta}: \qquad \mathbf{Better for larger mass?}$$
$$\frac{\sigma_{P, eq}^{2}}{P_{z, a}^{2}} \approx \frac{m_{e} \gamma}{2 (am_{p} g_{L} \ln[1]} \qquad \frac{d \left\langle \theta_{rms}^{2} \right\rangle}{ds} = \frac{z^{2} \mathbf{E}_{s}^{2}}{\beta^{2} c^{2} p_{\mu}^{2} \mathbf{L}_{\mathrm{R}}}$$

Example

- ERIT-P-storage ring to obtain directed neutron beam (Mori-Okabe, FFAG05)
- 10 MeV protons
 - ⁹Be target for neutrons
 - σ ≈ 0.5 barns
 - $\beta = v/c = 0.145$
 - Large δE heating
- Baseline Absorber
 - 5µ Be absorber
 - δE_p=~36 keV/turn
- Design Intensity
 - 1000Hz, 6.5×10¹⁰p/cycle
 - 100W primary beam
 - < 1.5 kW on foil
 - 0.4 kW at n_{turns} =1000

Table 1: Reference parameters of the ERIT Ring

Parameter	Symbol	Ref. Value	Units	
Beam Kinetic Energy	Ep	10	MeV	
Beam Momentum	Pp	137.4	MeV/c	
Beam velocity	β=v/c	0.145		
Beam current	Ip	40	mA	
Ring Circumference	С	11.3	m	
Ring tunes	v_x, v_y	1.89,1.34		
Mean Betatron function	$\langle \beta_{\perp} \rangle$	0.95,	m	
Maximum betatron functions	$\beta_{x,max}, \beta_{y,max}$	1.48,2.03	m	
Dispersion (at wedge)	η_0	0.6	m	
Transition gamma	γι	1.7		
Energy loss (Be) at ref. energy	dE/ds	72	MeV/cm	
Sum of partition numbers (at Ep)	Σ_{g}	0.37		
Absorber central thickness	δz	5	μ	
Mean energy loss / turn	δE_{AVE}	36	keV	
Rf voltage	V _{rf}	200	kV/turn	
Rf harmonic	h	5		
Rf frequency	f _{rf}	f _{ff} 19.25		
Longitudinal focusing function	β _e	2.1 Radia		

ERIT results

- With only production reaction, lifetime is 30000 turns
- With baseline parameters, cannot cool both x and E
 - Optimal x-E exchange increases storage time from 1000 to 3000 turns (3850 turns = 1ms)

- With x-y-E coupling, could cool 3-D with g_i= 0.12
 - Cooling time would be ~5000 turns
 - With β_{\perp} =0.2m, δE_{rms} = 0.4MeV, $\epsilon_{\perp,N}$ = 0.0004m (x_{rms}=2.3cm)
 - x_{rms}= 7.3cm at β_⊥=2m (would need r =20cm arc apertures) (but 1ms refill time would make this unnecessary)

ERIT-recent results

- Lattice changed from spiral to radial sector
 - spiral sector had too small vertical aperture
- With cooling effects, beam has ~1000 turn lifetime in ICOOL simulation

(Mori and Okabe FFAG06)

- with $g_{L,0} = -1.63$, $\eta = 0.5m$,
 - need G = 3.5m⁻¹ to get g_L=0.12

 (L_w =0.3m)
- For 3-D cooling, need to mix with both x and y
 - Solenoid cooling rings
- Also "Moebius" lattice (R. Talman)
 - Single turn includes x-y exchange transport
 - solenoid(s) or skew quads
 - in zero dispersion region for simplicity
 - Solenoid: $BL = \pi B\rho$
 - For 10 MeV p : BL = 1.44T-m
 - Complete period is 2 turns

$$g_{L} \rightarrow g_{L,0} + \frac{\eta \rho'}{\rho_0} = g_{L,0} + G\eta$$

10

• Obtain variable thickness by bent foil (Mori et al.)

$$\delta(x) = \delta_R \sqrt{1 + y'(x)^2} = \delta_0 (1 + \frac{(x - x_o)}{L_W}) = \delta_R (1 + \frac{x}{a})$$

- Choose $x_0 = 0.15m$, $L_w = 0.3$, $\delta_o = 5\mu$
 - then a=0.15, δ_R=2.5
 - for $g_{L,0} = -1.63$, $\eta = 0.5m$
- Barely Compatible with β^{*} = 0.2m
- Beam energy loss not too large?
 - <1kW Power on foil</p>

$$y = \int \sqrt{\left(\frac{x}{a}\right)^2 + 2\left(\frac{x}{a}\right)} \cdot dx$$
$$= \frac{(a+x)\sqrt{x^2 + 2ax}}{2a} - a\ln\left[\sqrt{x} + \sqrt{a+x}\right]$$

 Mixing of transverse heating with longitudinal could be larger effect: (Wang & Kim)

$$\frac{\mathrm{d}\varepsilon_{z}}{\mathrm{d}s} = -g_{L}\frac{\frac{\mathrm{d}P}{\mathrm{d}s}}{P}\varepsilon_{z} + \frac{1}{2}\beta_{z}\frac{\mathrm{d}\delta_{\mathrm{rms}}^{2}}{\mathrm{d}s} + \frac{1}{2}\frac{\eta^{2}}{\beta_{z}}\frac{\mathrm{d}\theta_{\mathrm{rms}}^{2}}{\mathrm{d}s}$$
$$\frac{\mathrm{d}\varepsilon_{x}}{\mathrm{d}s} = -g_{x}\frac{\frac{\mathrm{d}P}{\mathrm{d}s}}{P}\varepsilon_{x} + \frac{1}{2}\beta_{x}\frac{\mathrm{d}\theta_{\mathrm{rms}}^{2}}{\mathrm{d}s} + \frac{1}{2}\frac{\eta^{2}}{\beta_{x}}\frac{\mathrm{d}\theta_{\mathrm{rms}}^{2}}{\mathrm{d}s}$$

At ERIT parameters: $β_x$ = 1.0m, $β_z$ = 16m, η=0.6m, Be absorber, dδ²/ds= 0.00032, dθ²/ds= 0.0133 only 5%, 1.5% changes ... At $β_x$ = 0.2m, ~25% change ...

$$\frac{d\langle\theta_{\rm rms}^2\rangle}{ds} = \frac{z^2 E_s^2}{\beta^2 c^2 P_a^2 L_R} \qquad \qquad \frac{d(\delta_{\rm rms}^2)}{ds} = 4\pi (r_e m_e c^2)^2 N_A \frac{Z}{A} \rho \frac{\gamma^2 z^2}{\beta^2 P_a^2} \left(1 - \frac{\beta^2}{2}\right)$$

$$\beta_{\rm L} = \sqrt{\frac{\beta^2 PcC\lambda_{\rm RF}(\frac{1}{\gamma^2} - \frac{1}{\gamma_{\rm T}^2})}{2\pi eV_{\rm RF} cos\phi_{\rm S}}}$$
 12

β-beam Scenario

Conventional Beta beam ion source

- Want:
 - lifetime ~1s
 - large v-energy
 - v and v*
 - easily extracted atoms
- Number of possible ions is limited (v sources easier)
- Noble gases easier to extract
 - ${}^{6}\text{He}_{2}$ "easiest" $E_{v^{*}} = 1.94 \text{MeV}$
 - ${}^{18}Ne_{10}$ for v $E_v = 1.52MeV$
- (⁸B, ⁸Li) have E_{v,v*} =~7MeV
- Want 10²⁰ v and v* / year...

v*-sources

The is the cost called and.									
Isotope	<mark>A/Z</mark>	T ½ (s)	Q₀ g_s to g_s (MeV)	Qp eff (MeV)	E _p av (MeV)	E _v av (MeV)	Ions/bunch	Decay rate (s ⁻¹)	rate / E _{v av} (s ⁻¹)
°Не	3.0	0.80	3.5	3.5	1.57	1.94	5·10 ¹²	4·10 ¹⁰	2·10 ¹⁰
⁸ He	4.0	0.11	10.7	9.1	4.35	4.80	5·10 ¹²	3.1011	6·10 ¹⁰
⁸ Li	2.7	0.83	16.0	13.0	6.24	6.72	3·10 ¹²	3·10 ¹¹	4·10 ⁹
⁹ Li	3.0	0.17	13.6	11.9	5.73	6.20	3.10 ¹²	1.10^{11}	$2 \cdot 10^{10}$
¹¹ Be	2.8	13.8	11.5	9.8	4.65	5.11	3·10 ¹²	1·10 ⁹	2·10 ⁸
¹⁵ C	2.5	2.44	9.8	6.4	2.87	3.55	$2 \cdot 10^{12}$	5·10 ⁹	1.10^{9}
¹⁶ C	2.7	0.74	8.0	4.5	2.05	2.46	$2 \cdot 10^{12}$	$2 \cdot 10^{10}$	6·10 ⁹
¹⁶ N	2.3	7.13	10.4	5.9	4.59	1.33	1.10^{12}	1·10 ⁹	1·10 ⁹
¹⁷ N	2.4	4.17	8.7	3.8	1.71	2.10	$1 \cdot 10^{12}$	2·10 ⁹	1.10^{9}
¹⁸ N	2.6	0.64	13.9	8.0	5.33	2.67	1.10^{12}	$2 \cdot 10^{10}$	6·10 ⁹

v-sources

<mark>Isotope</mark>	<mark>A/Z</mark>	T ½ (s)	<mark>Q₀</mark> g.s. to g.s. (MeV)	Q ₆ eff (MeV)	E ₀ av (MeV)	E _v av (MeV)	Ions/bunch	Decay rate (s ⁻¹)	rate / E _{v av} (s ⁻¹)
°В	1.6	0.77	17.0	13.9	6.55	7.37	2.1012	2.1010	2·10 ⁹
¹⁰ C	1.7	19.3	2.6	1.9	0.81	1.08	$2 \cdot 10^{12}$	6.10^{8}	6·10 ⁸
¹⁴ O	1.8	70.6	4.1	1.8	0.78	1.05	$1 \cdot 10^{12}$	1.10^{8}	1.10^{8}
¹⁵ O	1.9	122.	1.7	1.7	0.74	1.00	1.10^{12}	7·10 ⁷	7·10 ⁷
¹⁸ Ne	1.8	1.67	3.3	3.0	1.50	1.52	1.10^{12}	4·10 ⁹	3·10 ⁹
¹⁹ Ne	1.9	17.3	2.2	2.2	0.96	1.25	1.10^{12}	4·10 ⁸	3·10 ⁸
²¹ Na	1.9	22.4	2.5	2.5	1.10	1.41	9·10 ¹¹	3·10 ⁸	2·10 ⁸
22.		- · -					11	10	0

춖

β-beam Scenario (Rubbia et al.)

- Produce Li and inject at 25 MeV
 - Charge exchange injection
- nuclear interaction at gas jet target produces ⁸Li or ⁸B
- Multiturn with cooling maximizes ion production
- ⁸Li or ⁸B is caught on stopper(W)
 - heated to reemit as gas
- ⁸Li or ⁸B gas is ion source for βbeam accelerate
- Accelerate to Bρ = 400 T-m
 - Fermilab main injector
- Stack in storage ring for:
- ⁸B→⁸Be + e⁺+v or ⁸Li→⁸Be + e⁻+ v^{*} neutrino source

Cooling for β -beams (Rubbia et al.-NuFACT06)

- β-beam requires ions with appropriate nuclear decay
 - ${}^{8}B \rightarrow {}^{8}Be + e^{+} + v$
 - ${}^{8}\text{Li} \rightarrow {}^{8}\text{Be} + e^{-} + v^{*}$
- Ions are produced by nuclear interactions
 - ${}^{6}\text{Li} + {}^{3}\text{He} \rightarrow {}^{8}\text{B} + n$
 - $^{7}\text{Li} + {}^{2}\text{H} \rightarrow {}^{8}\text{Li} + {}^{1}\text{H}$
 - Secondary ions must be collected and reaccelerated
- Either heavy or light ion could be beam or target
 - Ref. 1 prefers heavy ion beam ions are produced more forward ("reverse kinematics")
 - He or ²H beam on Li has other advantages
- Parameters can be chosen such that target "cools" beam
 - (losses and heating from nuclear interactions, however...)

β-beams example: ${}^{6}Li + {}^{3}He \rightarrow {}^{8}B + n$

- Beam: 25MeV ⁶Li⁺⁺⁺
 - $P_{Li} = 529.9 \text{ MeV/c}$ Bp = 0.59 T-m; v/c=0.09415
- Absorber:³He
 - Z=2, A=3, I=31eV, z=3, a=6
 - **dE/ds= 1180 MeV/gm/cm²**, L_{R} = **70.9 gm/cm²** (ρ_{He-3} = 0.09375 gm/cm³)Liquid, (ρ_{He-3} = 0.134·10⁻³P gm/cm3/atm in gas)
- If $g_x = 0.123$ ($\Sigma_g = 0.37$), $\beta_{\perp} = 0.3m$ at absorber
 - $\epsilon_{N,eq} = \sim 0.000046 \text{ m-rad}$
 - $\sigma_{x,rms}$ = 1.2 cm at β_{\perp} =0.3m,
 - $\sigma_{x,rms}$ = 3.14 cm at β_{\perp} =2.0m
- $\sigma_{\rm E,eq}$ is ~ 0.4 MeV
 - In[]=5.68

 $\boldsymbol{\epsilon}_{\mathbf{N},\mathbf{eq}} \cong \frac{\mathbf{z}^2 \boldsymbol{\beta}_{\perp} \mathbf{E}_{\mathbf{s}}^2}{2\mathbf{g}_{\mathbf{x}} \boldsymbol{\beta} \ \mathbf{am}_{\mathbf{p}} \mathbf{c}^2 \mathbf{L}_{\mathbf{R}} \frac{\mathbf{d} \mathbf{E}_{\mathbf{z},\mathbf{a}}}{\mathbf{d} \mathbf{s}}}$

$$\sigma_{\rm E,eq}^{2} = \frac{(m_{\rm e}c^{2})(am_{\rm p}c^{2})\beta^{4}\gamma^{3}}{2g_{\rm L}\ln[]} \left(1 - \frac{\beta^{2}}{2}\right)$$

- Nuclear cross section for **beam loss is 1 barn (10⁻²⁴ cm²)** or more
- $\sigma = 10^{-24} \text{ cm}^2$ corresponds to ~5gm/cm² of ³He
 - ~10 3-D cooling e-foldings …
- Cross-section for ⁸B production is ~10 mbarn
 - At best, 10⁻² of ⁶Li is converted
- Goal is **10¹³/s of ⁸B** production
 - then at least 10¹⁵ Li⁶/s needed
- Space charge limit is ~10¹² ⁶Li/ring
 - Cycle time is <10⁻³ s
 - If C=10m, τ =355 ns, 2820 turns/ms
 - 5/2820=1.773*10⁻³ gm/cm² (0.019 cm @ liquid density ...)
 - 2.1 MeV/turn energy loss and regain required ...(0.7MV rf)
 - 0.944 MW cooling rf power...

Complementary case- $^{7}Li + {}^{2}H \rightarrow {}^{8}Li + {}^{1}H$

- Nuclear cross section for **beam loss is 1 barn (10⁻²⁴ cm²)** or more
- $\sigma = 10^{-24} \text{ cm}^2$ corresponds to ~3.3gm/cm² of ²H
 - ~9 3-D cooling e-foldings ...
- Cross-section for ⁸Li production is ~100 mbarn
 - 10⁻¹ of ⁷Li is converted ?? 10 × better than ⁸B neutrinos
- Goal is **10¹³/s of ⁸Li** production
 - then at least 10¹⁴ Li⁷/s needed
- Space charge limit is ~10¹² ⁷Li/ring
 - Cycle time can be up to 10⁻² s, but use 10⁻³s
 - If C=10m, τ =355 ns, 2820 turns
 - 3.3/2820=1.2*10⁻³ gm/cm² (0.007 cm @ liquid D density ...)
 - 1.3 MeV/turn energy loss and regain required ...(0.43MV rf)
 - 0.06 MW cooling rf power...

Space charge – Direct/inverse

• At N = 10¹², B_F =0.2, β =0.094, z=3, a=6, $\epsilon_{N,rms}$ = 0.000046:

δv ≈ 0.2

- tolerable ??
- Space charge sets limit on number of particles in beam and on transverse emittance
- Effect is reduced for "direct kinematics"
 - (D/He beam, Li target)

$$\delta \nu \cong \frac{z^2 r_p N_{tot}}{4\pi\beta\gamma^2 a B_F \epsilon_{N,rms}}$$

- Is "direct" source better than "inverse" source?
 - ⁶Li₃ beam + ³He₂ target

• or

- ³He₂ beam + ⁶Li₃ target
- Beam energy, power on target less (1/2to 1/3)
- Li foil or gas-jet target? Gas-jet nozzle for wedge effect
- > 0.1MW power on target

- ...But contains mistakes
- Longitudinal emittance growth 2× larger
 - (than NuFACT06 presentation)
 - synchrotron oscillations reduce energy spread growth rate but not emittance growth rate
- Emittance exchange needs x-y coupling and balancing of cooling rates to get 3-D cooling
 - More complicated lattice
- 3-D cooling needed to get enough ions
- Increases equilibrium emittance, beam size
 - increase needed for space charge, however
- Ion production to storage ring efficiency is not 100% ...

Low-Energy "cooling"- emittance exchange

22

• dP_{μ}/ds varies as ~1/ β^3

ICOOL Simulation results

- Low-Energy muons in H₂ absorber
 - 50 MeV/c (4 cm H₂)
 - 30 MeV/c (0.7cm H₂)
 - 15 MeV/c (0.8mm H₂ or 80µ Be or...)
 - Could use gas absorbers/jets ?
- Results follow rms eqns
 - less multiple scattering ...
- Typical section:
 - reduces P by 1/3P
 - δp increases by factor of 2
 - ϵ_x , ϵ_y reduced by $1/\sqrt{2}$

- New Model 6 (Fano model) much less rms scattering than Model 4(Moliere/Bethe)
 - At 200 MeV/c μ on H₂, M4 scattering ~10% > rms eq.
 - M6 scattering (θ^2) is ~30% less than rms eq.
- Low energy scattering less at low momentum
 - At 15 MeV/c, M4 scattering ~40% < than rms eq.
 - M6 scattering (θ^2) is ~60% less than rms eq.
- Which is more accurate? rms eq., model 4 or 6 or ??

$$\frac{d\varepsilon_{N}}{ds} = -\frac{1}{\beta^{2}E} \frac{dE}{ds} \varepsilon_{N} + \frac{\beta\gamma \beta_{\perp}}{2} \frac{d\langle \Theta_{rms} \rangle}{ds}$$

$$\frac{l\langle \Theta_{rms} \rangle}{ds} = \frac{z^{2}E_{s}^{2}}{\beta^{2}c^{2}p_{\mu}^{2}L_{R}} \left(1 + 0.038\ln\left(\frac{ds}{L_{R}}\right)\right)^{2} \qquad \varepsilon_{N,eq} = \frac{\beta_{\perp}E_{s}^{2}}{2g_{t}\beta m_{\mu}c^{2}L_{R}\frac{dE}{ds}}$$

$$\frac{\varepsilon_{N,eq}}{24} = \frac{\beta_{\perp}E_{s}^{2}}{2g_{t}\beta m_{\mu}c^{2}L_{R}\frac{dE}{ds}}$$

Comments

- Can fit into end-stage cooling (with similar effects?)
- Can use gas jet absorbers to avoid having windows
 - P_{jet} > 1 atm possible
- Need "rf" to reduce dp/p (longer bunches for multistep)
 - 1mm bunch can grow to 1m bunch length

Summary

- Low energy ionization cooling has possible important applications
 - Protons for neutron generation (Mori et al.)
 - β-beam source production (Rubbia et al.)
 - Cooling of µ's to minimum transverse emittance
 - REMEX that might work ...
- "Cooling" is predominantly emittance exchange
 - X-y-z exchange needed for "real" cooling

© 2003 United Feature Syndicate, Inc.

© UFS, Inc.

X-sections, kinematics

