Proton Drivers & Muon Sources at Fermilab

David Neuffer Fermilab

Introduction–Fermilab Future Plans (~Oddone)

- (Tevatron shuts down ~2009)
- First Priority ILC
 - Global Study ~1 year –present to DOE (end of 2006)
 - IF favorable, push for near-term construction at Fermilab
- Second Priority protons
 - Priorities are NUMI, NoVA, ...
 - Some excess proton capacity for other experiments
 - If ILC near-term, continue facility incremental upgrades
 - Becomes high priority if ILC not encouraged
 PROTON DRIVER: 8 GeV, MW superconducting linac
- Accelerator Physics Center (from FRA bid)
 - Muon Collider Task Force

Fermilab proton sources

- Neutrino Aactor
- Adapt existing facility for "Super" NUMI and μ-e conversion experiment
 - Future "upgrades"- configurations- up to~1MW at 125 GeV
 - Protons for muon source A-D configuration
 - extract beam for mu-e conversion $\mu^- A \rightarrow e^- A$

• **Proton Driver – 8 GeV future source ?**

- 1 to 4 MW at 8 GeV SRF Linac
- for collider, v-Factory, etc.
- Need buncher ring to accumulate p's

Present Proton Source: 8 GeV Booster

NOW: 400 MeV Linac→8 GeV Booster (C=454m) produces 80 bunches (53 MHz)

- Currently Limited by losses in Booster
- ~8Hz, ~ 4 × 10¹²/ pulse: ~3×10²⁰ p/year (0.04MW)
- 15Hz, 5×10^{12} /pulse possible (0.1MW) (6×10¹³ protons/s)
- NUMI, MiniBOONE, Tevatron p-source
 - Tevatron, MiniBOONE will be completed...
- Capacity for other experiments ...
- But 15Hz cycle limits applications

Main Injector,

MiniBOONE

Booster – 8 GeV

SNuMI stage 1: 700 kW Recycler as an 8 GeV proton pre-injector

♦ After the Collider: Use the Recycler as a p pre-injector

Booster batches are injected at 15 Hz rep rate to fill Recycler, transferred to MI and accelerated

if we use the Recycler to accumulate protons from the Booster while MI is running, we can save 0.4 s for each 6 Booster batches injected

> 6 batches (5×10¹² p/bx) at 120 GeV every 1.467s \Rightarrow 390 kW

Recycler momentum aperture is large enough to allow "slipstacking" in Recycler: up to 12 Booster batches injected

> 6 batches are slipped with respect to the other 6 and extracted to MI in a single turn

 $> \sim 4.7 \times 10^{12}$ p/batch, 95% slip-stacking efficiency

→ 5.4×10¹³ ppp at 120 GeV every 1.467 s \Rightarrow 700 kW

S. Nagaitsev, E. Prebys, M. Syphers 'First Report of the Proton Study Group', Beams-doc-2178 6

춖

SNUMI stage 2: Use Accumulator

- After ~2009, accumulator and Debuncher, Recycler are not needed for Fermilab Collider
- Can be used for proton programs
- Accumulator could be used for momentum stacking from booster for ~NUMI
- Stacked beam could also be used for µ-e

Parameter	Symbol	Accumulator	Debuncher
Circumference	$C=2\pi R_{ave}$	~474m	504m
Momentum	Р	8.89 GeV/c	8.89 GeV/c
Transition γ_T	γ _T	5.4	7.52
betatron fns	β _x , β _y , η _{max}	47, 40, 9.6	19.8, 17, 2.2
Tunes	v _x , v _y	6.9, 8.9	9.65, 9.76
aperture	a, b		

Momentum stacking in Accumulator

- Inject in a newly accelerated Booster batch every 67 mS onto the low momentum orbit of the Accumulator
- The freshly injected batch is accelerated towards the core orbit where it is merged and debunched into the core orbit
- Momentum stack 3-4 Booster batches

Accumulator stacks are boxcar stacked in Recycler; 6 accumulator stacks (18 booster fills) fills Recycler Transfer to Main Injector for acceleration to 120 GeV

"Superbeam" NEUTRINO PROGRAM + µ-source

~ MECO PROPOSAL - adapted to Fermilab ...

http://www.bnl.gov/henp/mu-e_docs/Draft_MECO_Tech_Prop.pdf

from Steve Geer NUFACT06

BEAM REQUIREMENTS

To reach MECO goal: Low energy bunched muon beam providing $\sim 10^{18}$ muons per yr: Requires $\sim 10^{20}$ primary 8 GeV protons per yr.

Bunch lengths short compared to the lifetime of muons in a nucleus (1.1 ms for Al), with a bunch spacing longer than this.

Experimental signature: mono-energetic electron & nothing else. To minimize backgrounds, when there is no incoming primary beam there must be no beam at the level of 1 part in 10⁹.

Ideal Bunch Structure for a MECO-like Experiment:

- Protons from Booster injected into accumulator
- Stack 1 to 4 booster turns, debunch (w/extraction gap)
 - ~4·10¹² n_{turns} protons
- Extract into Debuncher
- Rebunch in Debuncher
 - to ~40ns rms single bunch
- Slow extract to muon conversion experiment
 - over ~1.5s

13

Barrier bucket in Debuncher

- $\gamma_T = 7.6$ more isochronous
- Needs less rf but more time
- Compression within ~0.2s
- A:Rf-14kV barrier bucket
 - Square wave rf
- B: h=4 rf 14 to 30 kV
 - Sinusoidal rf ~2.5 MHz
- Start:±150°, σ_E = 3.3MeV
 ~4 batches
- ε_L= 6πσ_tσ_E= ~24 eV-s
- Finish: $\sigma < 30$ ns, $\sigma_{\rm E} = 42$ MeV
 - Small dilution

µtoe EXPERIMENT LOCATION:

from Steve Geer

NUFACT06

(Dixon Bogert)

- Fermilab may develop new proton source to replace "8-GeV" Booster at a multi-MW level
 - Studied at Fermilab but deferred to focus on ILC
 - R&D continues on technology
 - HINS "High Intensity Neutrino Source" research
 - deferral will be reevaluated as ILC develops ...
- Upgrade options
 - 8-GeV SRF proton linac
 - leading high-intensity possibility (HINS research)
 - Needs Collector ring for many applications
 - Booster-like rapid-cycling synchrotron but higher intensity
 - Larger apertures, injection linac upgrade, deeper tunnel

2 MW Proton Driver Parameters (short list)

8 GeV Superconducting LINAC (1300 MHz rf)

Review of the PD/Linac Cost

(All costs in 2004 K\$)	Linac
Project M&S*	229,779
Project SWF	89,118
Project Subtotal	318,897
G&A [#]	63,927
(16.05% M&S & 30.35% Labor)	
Project (incl. G&A)	382,824
Contingency (30%)	114,847
Total Cost	497,670

* Davis Bacon labor shows up as M&S# G&A rate will be lower on large POs

	Linac
	0.5 MW
Total Cost Estimate	497,670
Contingency (30%)	114.847
Project (incl. G&A)	382.824
G&A (16 05 M&S & 30 35% SWE)	63.927
Project Subtotal	318.897
Project Management	25,000
Civil Construction	81.168
EDIA	21.044
In-House EDIA (20% of Total Civil M&S)	12,025
Contracted EDIÀ (15% of Total Civil M&S)	9,019
Subtotal Civil M&S	60,125
Site Work (incl. environmental controls)	3,107
Utilities	9.431
Enclosures (incl. total OH&P)	22,498
Main PD Enclosure	7,577
Transport Line	8,723
Access Stairs/Alcoves	2,448
Buildings	24,462
Klystron Gallery	7,661
Utility Support Buildings - Cryo	6,273
Service Buildings (4 Reg'd)	10,528
Absorber Enclosure	626
Technical Systems	212 728
Front End	8.077
Ion Source	904
Front End and RFQ	2.143
MEBT	644
RT Triple Spoke Resonator	2,108
Beam Diagnostics & Controls	2,278
Cryomodules (incl. warm Debuncher)	101,608
Spokes	23,357
Ellipticals	76,693
Utilities	6,671
LCW	5,896
Vacuum	775
Cryogenic System	28,589
Modulators & Pulse Transformers	13,902
RF Klystrons & Distribution	26,089
Instrumentation & Controls	10,994
8 GeV Transport Line (incl. Injection)	8,773
Absorbers & Misc Elements	1,079
Infrastructure & Integration	6,948

- Technology development toward Proton Driver
- Build and test 325 MHz section of 8 GeV Linac
 - ion source, 2.5 MeV rfq, 10 MeV RT linac, 100 MeV SRF

HINS Front End - Beam Line Layout

Ion source H ⁻ , LI	EBT		50 keV
Radio Frequency	Quadrupole	4-5 m,	2.5 MeV
MEBT	(2 bunchers, 3 SC sol., chopper)	4 m	
RT TSR section	(16 resonators, 16 SC solenoid)	10 m	10 Mev
SSR1 section	(18 resonators, 18 SC solenoids)	14 m	30 MeV
SSR2 section	(22 resonators, 12 SC solenoids)	20 m	90 MeV

- 325 MHz RF power system, rf component tests
 - July 2006
- Superconducting cavity test cryostat installation
 - October 2006
- Ion Source installation in Meson Lab
 - November 2006
- RFQ delivery and power testing
 - January 2007
- 2.5 MeV beam tests
 - Beginning February 2007
- First SC spoke resonator power tests in test cryostat
 - April 2007
- Full 10 MeV RT linac installed; Beam operation
 - April 2008
- First SC spoke resonator cryomodule installation
 - October 2008
- Tests of RT + SC cavity RF distribution and control, 20 MeV Beam
 - December 2008

Meson Building Floor Plan

21

f APC program: $\mu^+ - \mu^-$ Collider

- Recent advances
 - Improved cooling scenarios
 - Muons, Inc. innovations
 - gas-filled rf cavities
 - "Complete" cooling scenario
- Potential high-energy machine if ILC not enough energy ...
- Cooling innovations may enable "low-emittance" collider
 - helical cooling channel
 - Parametric resonance cooling
 - Reverse emittance exchange
 - low-energy cooling

• LEMC workshop Fermilab

• Feb 12-16

$\mu^+ - \mu^-$ Collider Parameters

Parameter	4TeV(2000) NFMCC baseline	4TeV low emittance Muons, Inc. inspired
Collision Energy(2E ₁₁)	4000	4000 GeV
Energy per beam(E _u)	2000	2000 GeV
Luminosity(L=f₀n₅n₀N _µ ²/4πσ²)	10 ³⁵	10 ³⁵ cm ⁻² s ⁻¹
Source Paramete	ers 4 MW	0.9 MW p-beam
Proton energy(E _p)	16	8 GeV
Protons/pulse(N _p)	4×3×10 ¹³	2×1×10 ¹³
Pulse rate(f ₀)	15	20 Hz
μ acceptance(μ/p)	0.2	0.05
μ-survival (N _μ /N _{source})	0.4	0.2
Collider Par	rameters	
Mean radius(R)	1200	1000 m
μ /bunch(N _{$\mu\pm$})	2.5×10 ¹²	2×10 ¹¹
Number of bunches(n _B)	2	2
Storage turns(2n _s)	1500	2000
Norm. emittance(ε_N)	0.6×10 ⁻²	2.5×10 ⁻⁴ cm-rad
Geom emittance($\varepsilon_t = \varepsilon_N / \gamma \beta$)	3×10⁻6	1.3×10 ⁻⁷ cm-rad
Interaction focus β_{o}	0.3	0.1 cm
IR Beam size $\sigma = (\epsilon \beta_0)^{\frac{1}{2}}$	3.1	0.36 µm
$\delta E/E$ at collisions	0.12	0.2%

Summary/Comments

- A proton source is important for Fermilab future
- Proton source could be:
 - extension of existing facilities
 - New facility based on 8 GeV SRF Linac
- Accelerator Physics Center:

New 8 GeV Accumulator/buncher/stretcher

- Type: FODO racetrack,
 Superferric arcs
 - nonscaling
- H⁻ injection into NewRing (10Hz)
 - 700 turns
 - Transverse emittance can be enlarged ($\epsilon_N = 120\pi$ mm-mrad or more 20mm-mrad rms)
- Harmonic 4 buncher for v-Factory, single bunch extraction (400ns spacing)
- single bunch extraction mode
- Also useful for PRISM/PRIME, muon collider,

Circumference	$C=2\pi R_{ave}$	~454m
Momentum	Р	8.89 GeV/c
rf frequency,	h=4	2.6 MHz
Voltage	Vo	<1MV
Slip factor	$\eta = 1/\gamma^2 - 1/\gamma_t^2$	-0.022
Tunes	$\mathbf{v}_{x}, \mathbf{v}_{y}$	6.9, 8.9
aperture	a, b	~8, 5 cm

