MICE Cooling Channel Magnets: • Spectrometer Solenoid Procurement

• RF Module Coupling Coil Proposal

NFMCC 07 @ UCLA January 31, 2007

Steve Virostek

Lawrence Berkeley National Lab

MICE Cooling Channel Layout

Spectrometer Solenoid Overview

 Order for two spectrometer solenoid magnets was placed with Wang NMR by LBNL in June '06 Design review was held by Wang on Sept 6, 2006 -Complete design package book provided to LBNL Detailed magnet design is now complete • Superconducting wire was provided by LBNL (IIT) First machined coil former completed last week Coil winding will begin within two weeks •First magnet scheduled to be shipped end Aug 07 Steve Virostek - Lawrence Berkeley National Laboratory Years of World-Clas

.....

Science

Page 3

Purpose of the Spectrometer Solenoids

•The spectrometer solenoids provide a uniform field for the scintillating fiber tracker & match the uniform field section into the rest of MICE

- •The long center coil with its two short end coils are designed to generate a 4 T field
 - Field uniformity is better than 0.3% over a 1000 mm long, 300 mm diameter region
 - Uniformity is better than 0.1% over most of the region

MICE Field on Axis in the Flip Mode

Spectrometer Solenoid Cold Mass

First Completed Coil Winding Form

Steve Virostek - Lawrence Berkeley National Laboratory

Page 7

Spectrometer Solenoid Conductor

Design Overview (coil construction)

- •Single piece 6061-T6 aluminum coil former
- Each layer wet wound using Stycast 2850 FT
- •2.5 mil thick fiberglass between winding layers
- Aluminum coil banding will provide hoop force support and ensure coils are tight after cooldown
- •Conductor joints are to be lapped by at least 24" to minimize the I²R losses
- Passive quench protection will be provided by a system of diodes & resistors

Years of World-Clas

Science

.....

Steve Virostek - Lawrence Berkeley National Laboratory

Page 9

Cold Mass Support System (50 T axial force)

Steve Virostek - Lawrence Berkeley National Laboratory

Page 11

Design Overview (coil cooling)

- Indirect cooling using liquid helium condensers
- •Baseline design will use two cryocoolers but will allow mounting of a third cooler, if necessary
- High T_c leads will be accessible by means of a removable cover plate
- •60K (or less) thermal shield is conductively cooled using the first stage of the cryocoolers

.....

•Thermal shield copper mass will protect the high $T_{\rm C}$ leads and provide extra cooling margin

Page 12

Design Overview (PV's & supports)

- Helium vessel (Al) and vacuum vessel (304SS) to be designed & tested according to PV code
- •He vessel will contain two relief paths for safety
- •Unidirectional S-2 fiberglass cold mass supports using race-track shaped links (safety factor of 4)
- 304 SS support design derived from LBNL/Oxford
- •Cold mass support design allows cold shipping

MICE Scintillating Fiber Tracker Module

BERKELEYL

Page 15

Estimated Heat Loads

Component	Heat Leak (W)							
	@ 60 K	@ 4 K						
Cold Mass Supports	~7	0.31						
Radiation through MLI	~11	~0.4						
Necks and Instrumentation	~11	~0.55						
Current Leads	~80	1.05						
Total Estimated Heat Leak	~109	~2.31						

• The magnets can be cooled with a pair of 1.5 W pulse tube coolers

- The temperature of the cooler first stage is about 52 K instead of 60 K
- Given the temperature margin, the magnets can operate at 4.5 K
- The peak field at the cooler rotary slide valve is about 0.05 T

Years of World-Class

Science

.....

BERKELEYLA

Steve Virostek - Lawrence Berkeley National Laboratory

Page 16

Magnet Coil Load Lines

Quench Protection & Power Supply Hookup

MICE: Spectrometer Solenoid & Coupling Coil

BERKELEY LAF

Page 18

Pulse Tube Cryocoolers

- Magnets to be cooled to as low as 45 K (1st stage) and 3.8 K (2nd stage) using two 1.5 W pulse tube coolers
- Magnetic field at the cooler rotary valve motors is ~0.05 T (no iron shielding needed on the valve motors)
- Cryocoolers (up to three) can be installed and removed without breaking cryostat vacuum
- Coolers connected to He liquid bath w/a thermal siphon heat pipe to reduce ∆T between coil & cooler 2nd stage
- Four Cryomech 1.5 W pulse tube coolers ordered by IIT first unit shipping to Wang on February 19th

Magnet Power Supplies

•Three power supplies of +300 A at ±10 V for the center and two match coils (shared for 2 magnets) -two quadrant power supply -current regulation of < ±0.01% from 50 A to 275 A •Four power supplies of ± 50 A at ± 5 V for the two end coils (2 per magnet) -four quadrant power supply -current regulation of < ±0.03% from 5 A to 45 A Power supply specification is complete Lead time is 3 months - order to be placed soon

Steve Virostek - Lawrence Berkeley National Laboratory

Page 20

MICE: Spectrometer Solenoid & Coupling Coil

Years of World-Clas

Science

rrrrr

Schedule Summary

Task Description	2006								2007									
	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep		
Place Magnet Order with Wang NMR (LBNL)	•																	
Complete Magnet System Design																		
Write QC/QA Administration & Test Report																		
Procure & Deliver Superconductor to Wang (LBNL)																		
Conduct Magnet Design Review																		
Procure Coil Formers from Subcontractor																		
Write Spec and Procure High T _c Leads																		
Write Spec and Procure Cryocoolers (LBNL)																		
Write Spec and Procure Power Supplies (LBNL)																		
Wind Coils on Coil Formers																		
Assemble and Leak Check He Shell]						
Install Superinsulation and Cold Mass Supports																		
Install Hi-Tc Leads, Recondensers & Cryocoolers																		
Leak Checks, Cooldown & Acceptance Tests																		
Ship Magnets																		

Steve Virostek - Lawrence Berkeley National Laboratory

Page 21

Summary

• Detailed magnet design is now complete •1st coil former arriving at Wang this week • High T_c leads will arrive early February •Cryomech cryocoolers (4 each) on order Power supply spec is complete - order soon • First magnet to be shipped by end Aug 07 Second magnet to follow 1 month later

Steve Virostek - Lawrence Berkeley National Laboratory

Page 22

MICE: Spectrometer Solenoid & Coupling Coil

Years of World-Clas

Science

.....

MICE Coupling Coil Fabrication Plan Proposal

Lawrence Berkeley National Laboratory (LBNL)

Institute of Cryogenic & Superconductivity Technology (ICST) at the Harbin Institute of Technology

Progress towards LBNL/ICST Collaboration

•Scope: design, fabricate and test one MuCool coil and two MICE coupling coils

Preliminary discussions began last year

- Mike Green visit to ICST 4/06 and at MICE CM15 & CM16
- LBNL visit to ICST at Harbin in December '06
 - Attendees: M. Zisman, D. Li, S. Virostek, M. Green
 - ICST presented preliminary coupling coil designs

Design work is continuing by ICST engineers

_____ Years of World-Clas

Science

.....

Unresolved issues: level and sources of funding

Steve Virostek - Lawrence Berkeley National Laboratory

Page 24

MICE Cooling Channel

MICE RF Cavity & Coupling Coil Module

Steve Virostek - Lawrence Berkeley National Laboratory

Page 26

MICE: Spectrometer Solenoid & Coupling Coil

.....

BERKELEY LAF

Science

Page 27

Goals of the ICST/LBNL Collaboration

• Develop a coupling coil design for MICE, MuCool - Preferably one design that meets both project's needs

Fabricate and test three coupling coils at ICST

 Coil for MuCool is needed as soon as possible
 Two MICE coils can follow later (if appropriate)

 Integrate the coil design with the requirements

 of the MICE RF/Coupling Coil Module
 Issues: RF vacuum vessel, RF couplers, tuners, forces

LBNL Role in the Coil Development

 Develop engineering concept & initial analysis Specification of coil parameters & requirements Provide project oversight and design approval Procurement of superconductor, cryocoolers, leads, power supplies, etc. for all three coils Funding to ICST for added cost of MuCool coil - Additional material: coil winding form, cryostat, coil vacuum vessel, MuCool coil support structure

ICST Role in the Coil Development

 Perform engineering analyses and detailed design of the MICE/MuCool coupling coil

 Fabricate & test one MuCool coil with funding, material and components provided by LBNL

• Provide effort and material to complete the fabrication and testing of the two MICE coils

 Contribute to the collaboration by reporting progress at MICE meetings and in publications

> _____ Years of World-Clas

> > Science

.....

Steve Virostek - Lawrence Berkeley National Laboratory

Page 30

Coupling Coil Specification (LBNL)

- General system description
- Applicable codes and standards
- Coil parameters and requirements
- Inspection and testing plans
- Packing, shipping and handling
- List of LBNL furnished materials
- Quality assurance requirements
- Conceptual design drawings

Years of World-Clas

Science

.....

Steve Virostek - Lawrence Berkeley National Laboratory

Page 31

Coupling Coil Design Review

 Coupling coil design review to be held by ICST - Attendees: LBNL, MICE collaborators, other experts - Complete design package documentation to be provided - Follow up on issues & actions items identified in review Present engineering analyses and calculations All fabrication drawings ready for review Fabrication and assembly plans and procedures Coil test plans: electrical, thermal, mechanical •Quality assurance and process control plans

Steve Virostek - Lawrence Berkeley National Laboratory

Page 32

MICE: Spectrometer Solenoid & Coupling Coil

Years of World-Clas

Science

.....

ICST Coupling Coil CAD Model

Coupling Coil Components (ICST)

Cooling Circuit Details (ICST)

Cryocooler and Condenser Details (ICST)

Helium Vessel Thermal Analysis (ICST)

Steve Virostek - Lawrence Berkeley National Laboratory

MICE: Spectrometer Solenoid & Coupling Coil

______ Years of World-Class

Science

.....

BERKELEY LAB

Page 37

Helium Vessel Stress Analysis (ICST)

Coupling Coil Magnetic Field Analysis (ICST)

mm

BERKELEY LAB

MICE Channel Magnetic Field (ICST)

Flip Mode (Case1)

Steve Virostek - Lawrence Berkeley National Laboratory

Page 40

ICST Proposed Coil Winding Facility

MICE: Spectrometer Solenoid & Coupling Coil

mm

BERKELEY LAE

Project Deliverables from ICST

 Design package containing fabrication drawings •One MuCool coil with dedicated support (ASAP) Two coupling coils for the MICE Project Fabrication process documentation Magnet testing documentation Coupling coil project final report

Timeline - Early MuCool Coil Delivery

Task Description	2007												2008				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	
Complete Magnet System Design																	
Conduct Magnet Design Review																	
Procure & Deliver Superconductor to ICST (LBNL)																	
Procure Material and Fabricate Coil Former (Coil 1)		•								•				•			
Procure & Deliver High T _c Leads to ICST (LBNL)																	
Wind Coils on Coil Former (Coil 1)																	
Procure & Deliver Cryocoolers to ICST (LBNL)																	
Assemble and Leak Check He Shell (Coil 1)]							
Install Superinsulation and Cold Mass Supports (Coil 1)																	
Procure & Deliver Power Supplies to ICST (LBNL)										[
Design and fabricate MuCool Support Structure																	
Install Hi-Tc Leads, Recondenser & Cryocooler (Coil 1)			•						•••••••	•					•		
Leak Checks, Cooldown & Acceptance Tests (Coil 1)			•						•••••••	•					•		
Ship MuCool Coupling Coil (Coil 1) to FNAL			•						•••••••	•			<		•		
Fabricate Coil Formers (Coil 2 and 3)			•					1 1	0	•				•	•		
Wind Coils on Coil Formers (Coil 2 and 3)									1	I I							
Assemble and Leak Check He Shells (Coil 2 and 3)																	
Install Superinsulation & Cold Mass Supports (Coil 2 and 3)																	
Install Hi-Tc Leads, Recondensers & Cryocoolers (Coil 2 & 3)																	
Leak Checks, Cooldown & Acceptance Tests (Coil 2 and 3)																	
Ship 2nd and 3rd Coupling Coils to FNAL																•	

Steve Virostek - Lawrence Berkeley National Laboratory

Page 43

MICE: Spectrometer Solenoid & Coupling Coil

Years of World-Class Science

.....

BERKELEY LAE

Proposed Fabrication Plan Summary

 LBNL to provide design concept & specification ICST to develop detailed coupling coil design - Engineering analyses and design drawings - Design review to be held prior to fabrication LBNL will supply some components and material - Superconductor, cryocoolers, power supplies, etc. ICST will fabricate and test the coupling coils •LBNL will oversee the design and fabrication

Steve Virostek - Lawrence Berkeley National Laboratory

Page 44

MICE: Spectrometer Solenoid & Coupling Coil

Years of World-Cla

Science

.....