

Thermal Shock Measurements and Modelling for Solid High-Power Targets at High Temperatures

J. R. J. Bennett 1, G. Skoro 2, J. Bac k3, S. Brooks 1, R. Brownsword 1, C. J. Densham 1, R. Edgecock1, S. Gray 1 and A. J. McFarland 1

1 Rutherford Appleton Laboratory, Chilton, Didcot, Oxon. OX11 0QX, UK 2 Department of Physics and Astronomy, University of Sheffield, Sheffield. S3 7RH, UK 3 Department of Physics, University of Warwick, Coventry. CV4 7AL, UK

roger.bennett@rl.ac.uk

Neutrino Factory and Muon Collider Collaboration, UCLA, 29 January – 1 February 2007

OUTLINE

1. Introduction

2. Wire tests – an update from NuFact06

3. Fatigue and Creep

4. Longitudinal versus Transverse Bar Feed

The original RAL Target concept - (after Bruce King)

Schematic diagram of the radiation cooled rotating toroidal target

The alternative concept –

Individual Bar Targets

Target Parameters

Proton Beam

Target (not a stopping target)

Schematic diagram of the target and collector solenoid arrangement

The value of the peak stress is:

$$
\sigma_{\text{max}} = \pm E \alpha T
$$

With typical values for tungsten:

- $E = 300$ GPa a $a = 0.9 \times 10^{-5}$ K⁻¹ a $T = 100$ K
- 0.2% Yield Strength = ~20 MPa at 2000 K
- $UTS = \sim 100$ MPa

smax = 270 MPa

Stress exceeds UTS FAILURE EXPECTED!!

Real Life is not this simple.

-

The Pbar target at FNAL withstands 40,000 J cm-3!

The NF target has only 300 J cm-3

-

 \square It is not possible to test the full size targets in a proton beam and do a life test.

 Produce shock by passing high current pulses through thin wires.

Typical radial stress in the wire from thermal and Lorentz forces

Goran Skoro

*** -**

Peak current [kA] **Von Mises stress** *Goran Skoro*

Pulsed Power Supply. 0-60 kV; 0-10000 A 100 ns rise and fall time 800 ns flat top Repetition rate 50 Hz or sub-multiples of 2

Schematic circuit diagram of the wire test equipment

turbopump

Schematic section of the wire test assembly

Vertical Section through the Wire Test Apparatus

Picture of the wire test equipment

Measurement of the Pulse Temperature

1 kHz measurement rate

Tests on Tantalum Wire

The wire lasted for a few hundred thousand pulses before breaking or bending.

Tantalum is not a suitable material since it too weak at high temperatures (1600-2000 K).

Photograph of the tantalum wire showing characteristic wiggles before failure.

A broken tantalum wire

10.1000年的第三次,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月,

Yield and Ultimate Strength of Tantalum and alloys versus Temperature.

Fatigue characteristics of 1 mm thick tantalum sheet

Ultimate Tensile Strength of Tungsten Rods produced by various methods

Ultimate Tensile Strength versus Temperature of Tungsten and some Alloys

Yield Strength of Tungsten and some Alloys versus Temperature

Ultimate Tensile Strength of Tungsten and some Alloys versus Temperature

Tests on Tungsten Wire

Tungsten is much stronger than Tantalum particularly at high temperatures.

So - try Tungsten

Some Results: 0.5 mm diameter Tungsten Wires

"Equivalent Target": This shows the equivalent beam power (MW) and target radius (cm) in a real target for the same stress in the test wire. Assumes a parabolic beam distribution and 3 micro-pulses per macro-pulse of 20 micro-s.

W26

Broken Tungsten Wire after 13 million pulses.

W3 Tungsten Wire, after operating at 4900 A, peak temperature 1800 K, for 3.3x10 ⁶ pulses and then a few pulses at 7200 A at >2000 K.

W5 Tungsten Wire showing "wiggles": 6200 A, >2000 K peak temperature, 5625 pulses.

Individual pulses are not the problem.

Failure found after Many Pulses – the problem is:-

Fatigue and Creep

Very difficult to predict the number of cycles to failure.

S-N or Wöhler Plot – stress versus number of cycles to failure.

The Fatigue Limit Stress can be expressed by: $\sigma_{\rm 0}$ = 1.6 H $_{\rm v}$ ± 0.1H $_{\rm v}$ H v-- Vickers Hardness in kgf mm⁻² For tungsten at ~1800 K $H_v = 50$ so the fatigue limit stress is σ ₀ = 80 MPa

Radiation Damage

- Experience on the ISIS targets show that there is no serious problem up to ~12 dpa.
- 2. Tungsten pellets irradiated (~15-20 dpa) at PSI will be examined when cool enough.

π and μ re-absorption ratios for W target

MARS Simulation: 10 GeV protons on 1, 2 and 3 cm diameter W rods in 20 T field.

07/12/06

John Back

Conclusions

I believe that the viability of solid tungsten targets at high-temperature for a long life (~10 years) has been demonstrated with respect to thermal shock and fatigue and will not suffer undue radiation damage.

Future Programme

- **1.Continue wire tests with Tungsten and Graphite.**
- **2.VISAR measurements to asses the properties of tungsten, and any changes, during the wire tests. (Effect of thermal shock.)**
- **3.Tests with a proton beam – limited number of pulses possible – to confirm wire tests and VISAR measurements.**
- **4.Radiation damage studies.**