

# LH2 Absorber Status

### Mary Anne Cummings





NFMCC UCLA January 31, 2007

M. A. C. C. NFMCC UCLA



# what program?

### In the past year –

- 1. Re-instrumented KEK absorber for next MTA LH2 test
- 2. Established a new (and practical method) of window measurement
- 3. Completed GH2 RF test in MTA solenoid (most interesting experimental result out of NFMCC)

# Overall, Mucool

- 1. Has a dedicated test area with a planned ~ 550W refrigeration capacity, designed for LH2
- 2. Has new FNAL LH2 cryogenic expertise
- 3. Has an established LH2 safety committee with an critical, but encouraging, attitude toward its goals
- 4. Has an established LH2 track record



# Mucool MTA Absorber Task List

# Current program:

| $\succ$ GH <sub>2</sub> RF tests with magnet*      |  |
|----------------------------------------------------|--|
| KEK LH <sub>2</sub> test (convection)              |  |
| FF LH <sub>2</sub> absorber construction and tests |  |
| FF LH <sub>2</sub> and RF first cooling cell test  |  |
| $\succ$ GH <sub>2</sub> beam test*                 |  |
| Cooling cell beam tests                            |  |
|                                                    |  |

# Future projects:

- ➢ LH<sub>2</sub> HCC cryostat (Muons, Inc.)
- Lithium Hydride
- > Other
- M. A. C. C. NFMCC UCLA

Done! 2<sup>nd</sup> test in '07 ??? ??? Still scheduled ???

+ Window tests...

\* Muons, Inc.



# LH2 recent history

### ▶ 2004:

- $\Rightarrow$  1.5 FT scientists, 1 FT engineer (E. Black), 1 PT engineer (M. Haney), 1 PT graduate student, undergraduates
- $\Rightarrow$  NIU machine shop, electronics shop, UIUC computer, U Miss shop
- $\Rightarrow$  FNAL cryo group, metrology group
- $\Rightarrow$  Japan-USA funding (KEK MTA convection absorber)
- > 2005: (after ICAR \$\$ disappeared)
  - $\Rightarrow$  1 scientist PT
  - $\Rightarrow$  FNAL cryo group, vaporization lab, beams group
  - ⇒P8 lab
- ▶ 2006:
  - $\Rightarrow$  1 scientist PT
  - $\Rightarrow$  FNAL cryogroup, metrology group, vaporization lab, beams group
  - $\Rightarrow$  Lab 6 (K. Kephardt)
- ▶ 2007:
  - $\Rightarrow$  1 scientist <PT
  - $\Rightarrow$  FNAL SciDet support, beams group
  - ⇒Lab 6

# Window measurements



### Photogrammetry ~1000 points

New CMM ~ 100s "points"



### We have tried: chemical – mechanical - optical methods

# And now – sonic!



M. A. C. C. NFMCC UCLA



# "Feather" probe CMM

- Apollo Research Model 1022 CMM Touch Probe System
  - $\Rightarrow$  high frequency resonating stylus to detect contact with object
  - $\Rightarrow$  <10 mg force applied (700g old test)
  - $\Rightarrow$  contact detected by change in resonance
  - $\Rightarrow$  insensitive to CMM movement
  - $\Rightarrow$  ~ few micron sensitivity



Large clearance for test setup

## At FNAL SciDet facility

M. A. C. C. NFMCC UCLA



# Photogrammetic Test Setup (FNAL)

### Beautiful, detailed, but maybe overkill

Optical coating (another complication)

### Pressurization measurement with photogrammetry



### Shape measurement with photogrammetry



M. A. C. C. NFMCC UCLA



# Window measurements

### Initial measurements:

- > calibration ball measured ~ 2 microns consistency
- I<sup>st</sup> measurements of window profile self-consistent, but did not match design thickness! (220 vs. 126µ - will investigate)
- correction needed (but understood) for finite probe radius least errors at center (thinnest part)

> online computation

New Personnel: Mike Roman (FNAL) Mike Wojcik

M. A. C. C. NFMCC UCLA





# FNAL Safety requirements

### <u>Vacuum</u>

- 1. Burst test 5 vacuum windows at room temp. to demonstrate a burst pressure of at least 75 psid for all samples. (pressure exerted on interior side of vacuum volume).
- 2. Non-destructive tests at room temperature:
  - a. External pressure to 25 psid to demonstrate no failures: no creeping, yielding, elastic collapse/buckling or rupture
  - b. Other absorber vacuum jacket testing to ensure its integrity

Absorber

- 1. Room temp test: pressurize to burst ~ 4 X MAWP (25 psi at FNAL)
- 2. Cryo test:
  - a) pressure to below elastic limit to confirm consistency with FEA results
  - b) pressure to burst (cryo temp LN2) ~ 5 X MAWP from ASME: UG 101 II.C.3.b.(i)

M. A. C. C. NFMCC UCLA



- Mucool manufacture and measuring procedures deemed safe
- > RAL window pressure test requirements (Absorber and Vacuum)

| Test<br>Pressure           | Test<br>temperature | <pre># of tests required</pre> | Remarks                                                                                                                                                                                             |
|----------------------------|---------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 96 psi<br>(4 x Design P)   | @ 293K              | 3                              | Test to rupture. Windows to subject to<br>thermal cycling before the test                                                                                                                           |
| > 96 psi<br>(5 X Design P) | @ 77K               | 1 or 2                         | Test to rupture. If shrapnel is evident,<br>one further test will be needed. The<br>additional test will have the safety<br>mesh fitted to verify that shrapnel<br>doesn't reach the safety window. |
| 25 psi                     | Room temp           | 1                              | Test for buckling (external)                                                                                                                                                                        |
|                            |                     |                                |                                                                                                                                                                                                     |

| **Design Pressure = 24 psid        | MAWP FNAL = 25 psid - |  |
|------------------------------------|-----------------------|--|
| Effectively, the same for MICE and | MuCool                |  |

M. A. C. C. NFMCC UCLA



# Next steps..

### Window certification

 $\Rightarrow$  Have a practical and sufficient measurement technology

- ⇒ Design certification different for vacuum/absorber windows, and not yet completed for "inflected" window need this be done for only one diameter?
- ⇒ Tentative real **window certification**:
  - Materials inspection
  - Measurement
  - Sub-elastic limit pressure tests (on CMM?)
- $\Rightarrow$  Next Manufacturer?
  - U Miss.
- $\Rightarrow$  Review with Safety committee



# KEK test cryostat at MTA/FNAL



### M. A. C. C. NFMCC UCLA



# **Convection** Absorber

- Convection is driven by beam power and internal heaters
- GHe heat exchanger removes heat from absorber walls
- Flow essentially transverse
- Self-regulating
- Simpler system, less LH2
- Prototype exists..

Temperature Distribution:









M. A. C. C. NFMCC UCLA



# Absorber physics issues

# 1. Heat absorption

Benchmark for heat deposition for MC and NF ( $\mu^+\mu^-$  Collider feasibility study and NFII) in LH2

### $[3.24*10^{13}\mu/s]$

4\*10<sup>12</sup> (~10<sup>13</sup>) m's/bunch \* 15/s \* 4.7MeVg<sup>-1</sup>cm2 \* 0.0708g/cm3 \* 1.6\*10<sup>-13</sup>J/MeV = \*[1.4 HCC/straight] 3.2 (~8)[2.4] W(J/s)/ cm pathlength

- [] = LEMC starting point, 3 TeV
- 2. Density uniformity

how large a temperature gradient is tolerable?

Convection absorbers push the limits of large heat deposition into relatively small volumes of LH2 – knowledge will help determine absorber design.



# Convection theory and data ..



Required heat absorption for previous cooling channel: ~800 W/m but a possibility for LEMC?

M. A. C. C. NFMCC UCLA



# Temp. gradient on performance

- Exaggerate and simplify temperature gradient by replacing uniform absorber with 2 different density halves (14% higher/lower diff) but same average density and compare with uniform density absorber
- < 1% change in momentum and space distributions (average and sigmas)
- "Large" temp gradient may be tolerated if it is stable



# G4 Beamline simulation of four cooling cells

### M. A. C. C. NFMCC UCLA





# MTA/FNAL 2nd Cooling Test





Shigeru Ishimoto, Shoji Suzuki and Nobuaki Tanaka at LAB-6/FNAL Feb-10, 2006





# KEK upgrades

### Electric heater









Electric heater installed





L-H2/LHe Level sensor in absorber

M. A. C. C. NFMCC UCLA



- February 2006 upgraded instrumentation
- January 2007 installed heater
- Preliminary safety review approved
- Preliminary safety check list completed
- Schedule for 2007 MTA LH2 test to be determined



# MTA Beam

Beamline designed and costed by C. Johnstone for the MTA. Part of the Linac Instrumentation Test Program



M. A. C. C. NFMCC UCLA



# Lithium hydride

- LiH reacts violently with water, so water cooling must be carefully designed and implemented (it's not certain it can be done safely). Halon fire suppression is probably required.
- Handling of prefabricated LiH is not terribly hazardous (gloves and dust masks); fabrication (casting) will require QC, should be left to experts.
- Bare LiH can be pumped down to vacuum; it is best to repressurize with dry Nitrogen, but room air is OK.
- LiH cannot be in direct contact with aluminum (Al migrates).
- > Thermally-induced stresses could be a problem for high rate beams
- Surface oxidation from air moisture is almost inevitable; how will it affect the cooling performance?
- LiH is a hazardous material; the safety issues are very different from those of liquid Hydrogen, but comparable in difficulty.

Substantially less hazardous  $\neq$  substantially less safety work!



# If it were up to me...

- Window measurement will proceed with the new CMM system and probes
- > The KEK LH2 absorber test will be completed by this spring
- The first "cooling cell" component test will be the GH2 RF cavity inside the MTA solenoid in the MTA beam and make this a priority
- Put the KEK LH2 absorber in the MTA beam
- IF everything, including 6D MANX, "slides" indefinitely
- Build a "one turn" HCC prototype and fill it with H2 (why not?)
- Any other possible cooling component that exists we should consider testing at MTA

These are administrative issues..





# > For $H_2$ , two principles driving system design :

- $\Rightarrow$  O<sub>2</sub> and H<sub>2</sub> separation
- $\Rightarrow$  No ignition sources

# > At FNAL: guidelines for the $LH_2$ absorber system

- ⇒ America Society of Mechanical Engineers (pressure and vacuum vessels, etc.)
- ⇒ National Electrical Code <= (Class I Division II, or "instrinsically safe")
- ⇒ Compressed Gas Associates
- ⇒ Fermilab Environment Safety and Health Code
- FERMILAB: "Guidelines for the Design, Fabrication, Testing, Installation and Operation of LH2 Targets 20 May 1997" by Del Allspach et al. Fermilab RD\_ESH\_010– 20 May 1997

NASA: "SAFETY STANDARD FOR HYDROGEN AND HYDROGEN SYSTEMS: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage, and Transportation"

- $\Rightarrow$  Ignition sources electrical, friction, impact, auto-ignition
- $\Rightarrow$  Minimum energy for ignition of H<sub>2</sub> is 0.017 mJ at 1 atm.
- $\Rightarrow$  Combustion H<sub>2</sub> /air ratio from 4% to 75%

PRIMARY SAFETY MECHANISM IS CONTAINMENT: "EXCEPTIONS HANDLED BY VENTING  $LH_2$  OUT OF THE AREA