Design MANX experiment

MANX magnet, Matching, and More

Katsuya Yonehara

January 30, 2007
NFMCC 2007, UCLA
Aim of the MANX experiment

• MANX is a proof-of-principle experiment.
 – *Six dimensional helical cooling theory* (ref. PRSTAB 8,041002 (2005))
 • Demonstrate 6D cooling, Continuous emittance exchange, Exceptional cooling performance…

• MANX can be a prototype cooling magnet to R&D of cooling performance for muon colliders
 – MANX can be applied for a short length precooler.
 – Synchrotron motion and transverse and longitudinal coupling with the beta function in HCC.
 – Non-linear effects associated with the higher order EM field components and energy loss process.
Combined function magnet (invisible in this picture)
Solenoid + Helical dipole + Helical Quadrupole

Dispersive component makes longer path length for higher momentum particle and shorter path length for lower momentum particle.

\[\kappa = \frac{2\pi a}{\lambda} = \frac{p_\phi}{p_z} \]

\[f_{\text{central}} = \frac{e}{m} (b_\phi \cdot p_z - b_z \cdot p_\phi) \]

Both terms have opposite signs.
Overview of MANX channel

- Use Liquid He absorber
- No RF cavity
- Length of cooling channel: 3.2 m
- Length of matching section: 2.4 m
- Helical pitch κ: 1.0
- Helical orbit radius: 25 cm
- Helical period: 1.6 m
- Transverse cooling: \sim150 %
- Longitudinal cooling: \sim120 %
- 6D cooling: \sim200 %
Design practical helical cooling magnet

- Siberian snake type magnet
- Consists of 4 layers of helix dipole to produce tapered helical dipole fields.
- Maximum field is ~7 T (coil diameter: 1.0 m)

- Use helical solenoid coil
- Consists of 73 single coils (no tilt).
- Maximum field is ~5 T (coil diameter: 0.5 m)
- Flexible field configuration

See Mike Lamm’s talk

Large bore channel (conventional)

Small bore channel (helical solenoid)
Helical field maps in TOSCA

Large bore magnet (conventional)

• Design with $\lambda = 2.0 \text{ m}$ and $\kappa = 0.8$

Small bore magnet (helical solenoid)

• Design with $\lambda = 1.6 \text{ m}$ and $\kappa = 1.0$.
• Negative field gradient is produced in helical solenoid coils.
• The required helical quadrupole component is changed by κ (helical pitch).
• The strength of the quadrupole component can be adjusted by the solenoid coil diameter.

\[\lambda = 1.0 \text{ m}, \ p = 300 \text{ MeV/c} \]
• Connect the straight beam section to the helical beam section.
 – Need to induce
 • Helical pitch $\kappa (=\phi/pz)$
 • Helical radius a
• Use atan to make smooth tapered field.
• Clearly see a smooth tracking.
• This channel is needed 10~15 meters.
Can we make a shorter matching section?

$\begin{align*}
\mathbf{f}_\uparrow &\propto \mathbf{b}_\varphi \cdot \mathbf{p}_z \quad \text{Repulsive central force} \\
\mathbf{f}_\downarrow &\propto -\mathbf{b}_z \cdot \mathbf{p}_\varphi \quad \text{Attractive central force}
\end{align*}$

$$
\mathbf{f}_{\text{central}} = \frac{e}{m} (\mathbf{b}_\varphi \cdot \mathbf{p}_z - \mathbf{b}_z \cdot \mathbf{p}_\varphi)
$$

$$
\frac{\partial \mathbf{p}_\varphi}{\partial a} = \alpha \mathbf{b}_\varphi + \beta \mathbf{b}_{\text{solenoid}} + \delta \frac{\partial \mathbf{b}_\varphi}{\partial a} + \varepsilon \frac{\partial \mathbf{b}_{\text{solenoid}}}{\partial a}
$$

- Transverse b_φ field produces transverse p kick.
- Solenoid b_z field stabilizes orbit.
- α, β, δ, and ε are the coefficients.
Use linear function for first trial

\[b_{\text{matching}} = \alpha b_0 z \]

- \(b_0 \): Amplitude of initial helical dipole magnet
- \(\alpha \): Ramping rate

Adjust solenoid strength to connect to a proper helical orbit.
Simulation study

Initial beam profile

- Beam size (rms): ± 60 mm
- $\Delta p/p$ (rms): ± 40/300 MeV/c
- x' and y' (rms): ± 0.4
 (Acceptance study has not been done yet.)

- Obtained cooling factor: ~200%
• Good cooling performance is preserved in the helical solenoid coil magnet.
• Longitudinal betatron oscillation makes complicated emittance evolutions.
• Optimize matching magnet
 – Fine tune Twiss parameters
• Optimize MANX magnet
 – Obtain the best cooling performance.
Possible beam line in Fermilab site

• Candidates
 – Linac (0.4 GeV proton) See Andreas Jansson’s talk.
 • Low yield, narrow space
 – Meson Test area (120 GeV proton) Ask B. Abrams.
 • Need energy absorber to reduce momentum.
 • Parasitic design with the ILC detector group
 – pbar accumulator ring (8 GeV)
 • Obtain good quality beam, sufficiently high intensity
 • One of the most preferable place
 – MiniBooNe (8 GeV)
 • Need muon capturing element
Preliminary optics design in MTA

See Andreas Jansson’s talk

Uses BNL D2 quads “Almost” fits in MTA
• 6D phase space (or emittance exchange) measurements at HCC entrance/exit are the minimum requirement to verify the cooling theory.

• Single particle tracking measurement vs beam measurement
 – Cost, reliability, precision, beam transport, etc...
 – Fermilab AD now consider rastering a pencil beam.

• The hardest part of the spectrometer design is how to determine the longitudinal phase space.
 – Time structure measurement?
 – HCC is a kind of spectrometer itself. Therefore, we can determine the momentum by tracking the particle in HCC.
 – Other interesting parameter is the feature of isochronous. This can be done by measuring ToF between upstream and downstream spectrometers.
 – PID?
Conclusions

- Big inflation in magnet design
- Found the simple solution for matching
- Need fine tuning
- Beam line design in progress
- Spectrometer design in progress
Collaborators list

Muons, Inc.
B. Abrams, M. Alsharo‘a, M.A. Cummings, R. Johnson, S. Kahn, M. Kuchnir, T. Roberts

JLab
K. Beard, A. Bogacz, S. Derbenev

IIT
D. Kaplan

Fermilab Technical Division
N. Andreev, V.V. Kashikhin, V.S. Kashikhin, M. Lamm, I. Novitski, V. Yarba, A. Zlobin

Fermilab Accelerator Division
C. Ankenbrandt, D. Broemmelsiek, M. Hu, A. Jansson, M. Popovic, V. Shiltsev

And many useful comments & suggestions from Muon Collider Task Force people
Appendix

• Show isochronous feature in HCC
\[t \text{ vs } P_{\text{total}} \]
MANX $Z=0 \text{ m}$

Fractions from initial

\[\Delta P_{\text{total}} = 0.937 \text{ /m} \]
\[\Delta t = 1.001 \text{ /m} \]

\[t \text{ vs } P_{\text{total}} \]
Z=1 m

\[\Delta P_{\text{total}} = 0.829 \text{ /2m} \]
\[\Delta t = 1.002 \text{ /2m} \]

\[t \text{ vs } P_{\text{total}} \]
Z=2 m

\[\Delta P_{\text{total}} = 0.829 \text{ /2m} \]
\[\Delta t = 1.002 \text{ /2m} \]

\[t \text{ vs } P_{\text{total}} \]
Z=3 m

\[\Delta P_{\text{total}} = 0.762 \text{ /3m} \]
\[\Delta t = 1.003 \text{ /3m} \]

\[t \text{ vs } P_{\text{total}} \]
Z=4 m

\[\Delta P_{\text{total}} = 0.735 \text{ /4m} \]
\[\Delta t = 1.005 \text{ /4m} \]

Momentum compaction factor $\eta = 0.34$

$\gamma t^2 = 0.72$