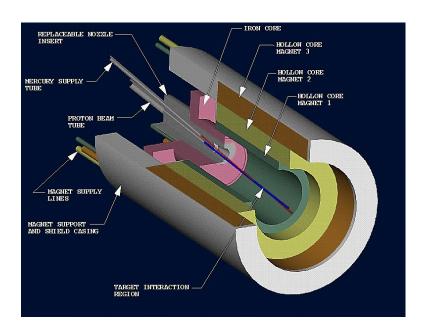

# High-Power Targets for Neutrino Superbeams, Neutrino Factories and Muon Colliders














K.T. McDonald

Princeton U.

NFMCC Meeting

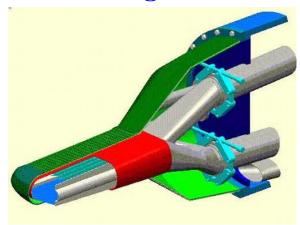
UCLA, January 29, 2007

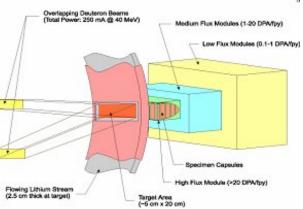
Targetry Web Page:

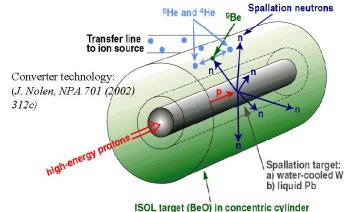
http://puhep1.princeton.edu/mumu/target/



# Why Targetry?


- Targetry = the task of producing and capturing  $\pi$ 's and  $\mu$ 's from proton interactions with a nuclear target.
- At a muon collider the key parameter is luminosity:

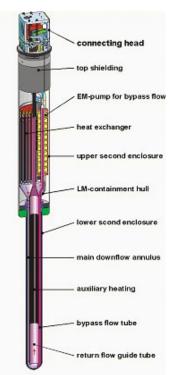

$$\mathcal{L} = \frac{N_1 N_2 f}{A} \mathbf{s}^{-1} \mathbf{cm}^{-2},$$


- ⇒ Gain as square of source strength (targetry), but small beam area (cooling) is also critical.
- At a neutrino factory the key parameter is neutrino flux,
  ⇒ Source strength (targetry) is of pre-eminent concern.
  [Beam cooling important mainly to be sure the beam fits in the pipe.]
- Since its inception the Neutrino Factory/Muon Collider Collaboration has recognized the importance of high-performance targetry, and has dedicated considerable resources towards R&D on advanced targetry concepts.
- The exciting results from atmospheric and reactor neutrino programs (Super-K, SNO, KamLAND) reinforce the opportunity for neutrino physics with intense accelerator neutrino beams, where targetry is a major challenge.



# High-Power Targets Essential for Many Future Facilties








**ESS** 







He-3 + Tritium Beam Footprint 19 x 190 cm **Tungsten primary** source, Deuterium coolant flows between rings

 $ISOL/\beta$  Beams **ENERGY AMPLIFIER** (1500 MWth) air intet BVACS flow paths outlet stack grado Seismic Isolator Heat exchanger Main vessel sub-critical Contaiment vesset fast neutrons Hot air riser driven by a proton accelerator Cold air downcomer hermal insulating wall Main silo Pienum region Fuel region C. Rubbia et al. Spaliation region CERN/AT/95-44(ET)

**ATW** 

**PSI** 



#### 4-MW Proton Beam

- 10-30 GeV appropriate for both Superbeam and Neutrino Factory.
  - $\Rightarrow$  0.8-2.5  $\times 10^{15}$  pps; 0.8-2.5  $\times 10^{22}$  protons per year of  $10^7$  s.
- Rep rate 15-50 Hz at Neutrino Factory, as low as 2 Hz for Superbeam.
  - $\Rightarrow$  Protons per pulse from 1.6  $\times 10^{13}$  to 1.25  $\times 10^{15}$ .
  - $\Rightarrow$  Energy per pulse from 80 kJ to 2 MJ.
- Small beam size preferred:
  - $\approx 0.1 \text{ cm}^2$  for Neutrino Factory,  $\approx 0.2 \text{ cm}^2$  for Superbeam.
- $\Rightarrow$  Severe materials issues for target AND beam dump.
  - Radiation Damage.
  - Melting.
  - Cracking (due to single-pulse "thermal shock".



## Radiation Damage

The lifetime dose against radiation damage (embrittlement, cracking, ....) by protons for most solids is about  $10^{22}/\text{cm}^2$ .

- $\Rightarrow$  Target lifetime of about 5-14 days at a Neutrino Factory (and 9-28 days at a Superbeam).
- ⇒ Mitigate by frequent target changes, moving target, liquid target, ...

## Remember the Beam Dump

Target of 2 interaction lengths  $\Rightarrow 1/7$  of beam is passed on to the beam dump.

Long distance from target to dump at a Superbeam,

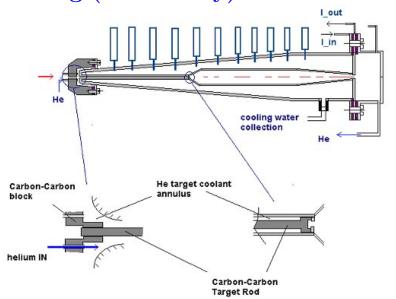
- $\Rightarrow$  Beam is much less focused at the dump than at the target,
- ⇒ Radiation damage to the dump not a critical issue (Superbeam).

Short distance from target to dump at a Neutrino Factory,

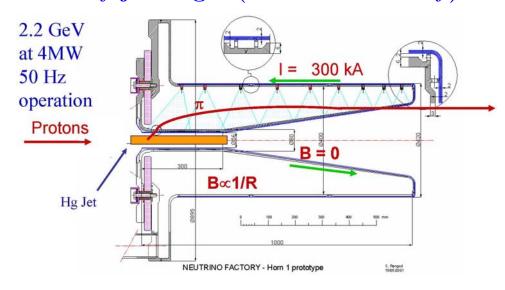
- $\Rightarrow$  Beam still tightly focused at the dump,
- ⇒ Frequent changes of the beam dump, or a moving dump, or a liquid dump.

A liquid beam dump is the most plausible option for a Neutrino Factory, independent of the choice of target. (This is so even for a 1-MW Neutrino Factory.)

The proton beam should be tilted with respect to the axis of the capture system at a Neutrino Factory, so that the beam dump does not absorb the captured  $\pi$ 's and  $\mu$ 's.




## Target and Capture Topologies: Toroidal Horn


The traditional topology for efficient capture of secondary pions is a toroidal "horn" (Van der Meer, 1961).

- Collects only one sign,  $\Rightarrow$  Long data runs, but nonmagnetic detector (Superbeam).
- Inner conductor of toroid very close to proton beam.
  - ⇒ Limited life due to radiation damage at 4 MW.
  - ⇒ Beam, and beam dump, along magnetic axis.
  - ⇒ More compatible with Superbeam than with Neutrino Factory.

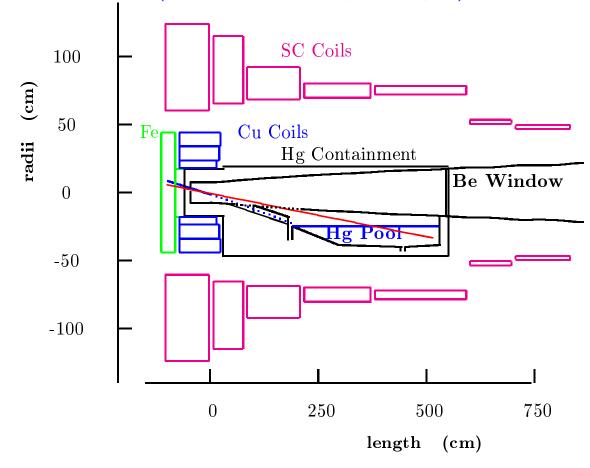
Carbon composite target with He gas cooling (BNL study):



#### Mercury jet target (CERN SPL study):



If desire secondary pions with  $E_{\pi} \lesssim 5$  GeV (Neutrino Factory), a high-Z target is favored, but for  $E_{\pi} \gtrsim 10$  GeV (some Superbeams), low Z is preferred.




## Target and Capture Topologies: Solenoid

Palmer (1994) proposed a solenoidal capture system for a Neutrino Factory.

- Collects both signs of  $\pi$ 's and  $\mu$ 's,  $\Rightarrow$  Shorter data runs (with magnetic detector).
- Solenoid coils can be some distance from proton beam.
- $\Rightarrow \gtrsim 4$  year life against radiation damage at 4 MW.
- ⇒ Proton beam readily tilted with respect to magnetic axis.
- $\Rightarrow$  Beam dump out of the way of secondary  $\pi$ 's and  $\mu$ 's.

Mercury jet target and proton beam tilt downwards with respect to the horizontal magnetic axis of the capture system. The mercury collects in a pool that serves as the beam dump (Neutrino Factory Study 2):

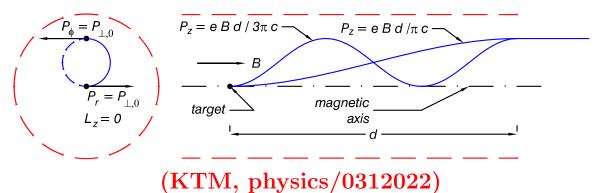




## A Neutrino Horn Based on a Solenoid Lens

- Pions produced on axis inside the (uniform) solenoid have zero canonical angular momentum,  $L_z = r(P_\phi + eA_\phi/c) = 0$ ,  $\Rightarrow P_\phi = 0$  on exiting the solenoid.
- If the pion has made exactly 1/2 turn on its helix when it reaches the end of the solenoid, then its initial  $P_r$  has been rotated into a pure  $P_{\phi}$ ,  $\Rightarrow P_{\perp} = 0$  on exiting the solenoid.
- $\Rightarrow$  Point-to-parallel focusing for

$$P_{\pi} = eBd/(2n+1)\pi c.$$


⇒ Narrowband (less background) neutrino beams of energies

$$E_{\nu} \approx \frac{P_{\pi}}{2} = \frac{eBd}{(2n+1)2\pi c}.$$

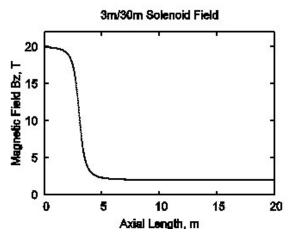
⇒ Can study several neutrino oscillation peaks at once,

$$\frac{1.27M_{23}^2[\mathbf{eV}^2] \ L[\mathbf{km}]}{E_{\nu}[\mathbf{GeV}]} = \frac{(2n+1)\pi}{2}.$$

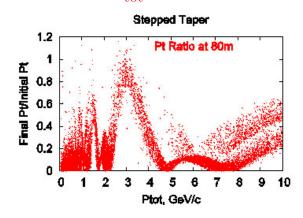
(Marciano, hep-ph/0108181)



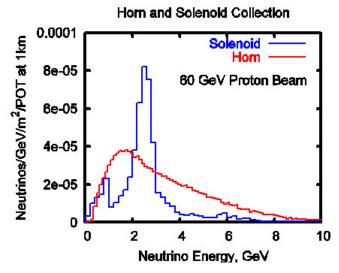
Study both  $\nu$  and  $\bar{\nu}$  at the same time.


- $\Rightarrow$  Detector must identify sign of  $\mu$  and e.
- $\Rightarrow$  Magnetized liquid argon TPC. (astro-ph/0105442).

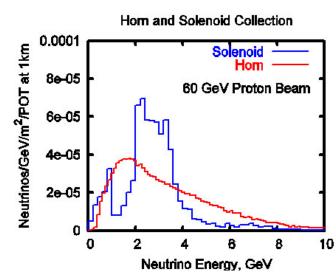



#### Simulation of Solenoid Horn

(H. Kirk and R. Palmer, NuFACT06)


B vs. z for 3 + 30 m solenoid.




 $\Rightarrow P_{\perp}$  minimized at selected  $P_{\mathrm{tot}}$ .



3-m solenoid gives 2 narrow peaks in  $\nu$  spectrum.

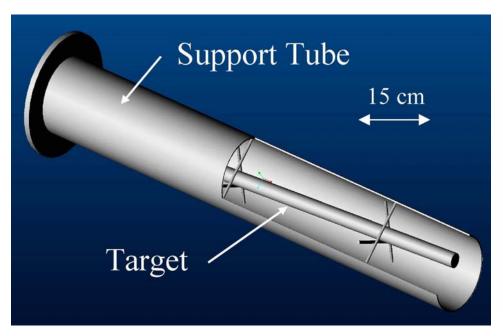


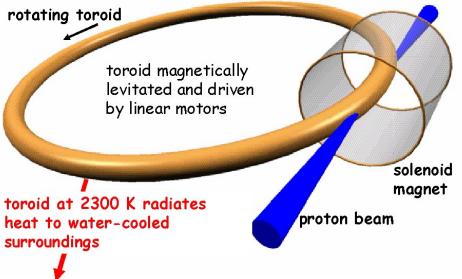
3-30-m solenoid broadens the higher energy peak.



Results very encouraging, but comparison with toroid horn needs confirmation.




# Thermal Issues for Solid Targets (Superbeams), I


The quest for efficient capture of secondary pions precludes traditional schemes to cool a solid target by a liquid. (Absorption by plumbing; cavitation of liquid.)

A solid, radiation-cooled stationary target in a 4-MW beam will equilibrate at about  $2500 \text{ C.} \Rightarrow \text{Carbon}$  is only candidate for this type of target.

(Carbon target must be in He atmosphere to suppress sublimation.)

A moving band target (tantalum) could be considered (if capture system is toroidal).







# Thermal Issues for Solid Targets (Superbeams), II

When beam pulse length t is less than target radius r divided by speed of sound  $v_{\text{sound}}$ , beam-induced pressure waves (thermal shock) are a major issue.

Simple model: if  $U = \text{beam energy deposition in, say, Joules/g, then the instantaneous temperature rise } \Delta T$  is given by

$$\Delta T = \frac{U}{C}$$
, where  $C = \text{heat capacity in Joules/g/K}$ .

The temperature rise leads to a strain  $\Delta r/r$  given by

$$\frac{\Delta r}{r} = \boldsymbol{\alpha} \Delta T = \frac{\boldsymbol{\alpha} U}{C},$$
 where  $\boldsymbol{\alpha} =$  thermal expansion coefficient.

The strain leads to a stress P (= force/area) given by

$$P = E \frac{\Delta r}{r} = \frac{E \alpha U}{C}$$
, where  $E =$  modulus of elasticity.

In many metals, the tensile strength obeys  $P \approx 0.002E$ ,  $\alpha \approx 10^{-5}$ , and  $C \approx 0.3$  J/g/K, in which case

$$U_{\rm max} pprox rac{PC}{Eoldsymbol{lpha}} pprox rac{0.002 \cdot 0.3}{10^{-5}} pprox \ oldsymbol{60 J/g}.$$

 $\Rightarrow$  Best candidates for solid targets have high strength (Vascomax, Inconel, TiAl6V4) and/or low thermal expansion (Superinvar, Toyota "gum metal", carbon-carbon composite).



# How Much Beam Power Can a Solid Target Stand?

How many protons are required to deposit 60 J/g in a material?

What is the maximum beam power this material can withstand without cracking, for a 10-GeV beam at 10 Hz with area 0.1 cm<sup>2</sup>.

Ans: If we ignore "showers" in the material, we still have dE/dx ionization loss, of about 1.5 MeV/g/cm<sup>2</sup>.

Now, 1.5 MeV =  $2.46 \times 10^{-13}$  J, so 60 J/g requires a proton beam intensity of  $60/(2.4 \times 10^{-13}) = 2.4 \times 10^{14}/\text{cm}^2$ .

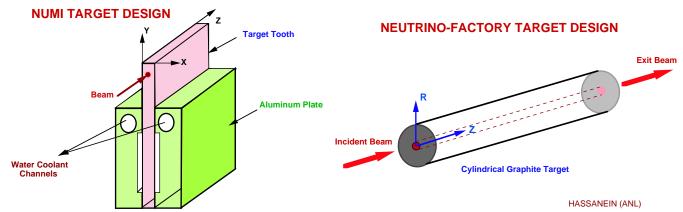
So,  $P_{\text{max}} \approx 10 \text{ Hz} \cdot 10^{10} \text{ eV} \cdot 1.6 \times 10^{-19} \text{ J/eV} \cdot 2.4 \times 10^{14}/\text{cm}^2 \cdot 0.1 \text{ cm}^2 \approx 4 \times 10^5 \text{ J/s} = 0.4 \text{ MW}.$ 

If solid targets crack under singles pulses of 60 J/g, then safe up to only 0.4 MW

beam power!

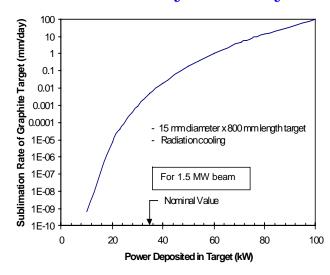
Empirical evidence is that some materials survive 500-1000 J/g,

 $\Rightarrow$  May survive 4 MW if rep rate  $\gtrsim$  10 Hz.


Ni target in FNAL pbar source: "damaged but not failed" for peak energy deposition of 1500 J/g.





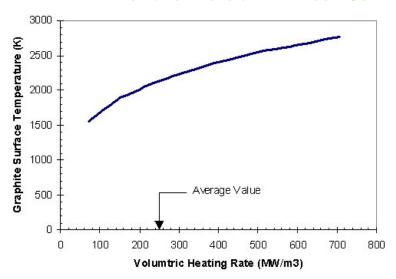



# A Carbon Target is Feasible at 1-MW Beam Power



A carbon-carbon composite with near-zero thermal expansion is largely immune to beam-induced pressure waves.

A carbon target in vacuum sublimates away in 1 day at 4 MW.




Sublimation of carbon is negligible in a helium atmosphere.

Radiation damage is limiting factor:  $\approx 12$  weeks at 1 MW.



Equilibrium temperature of a carbon target of 1-cm-diameter as a function of beam power, assuming only radiation cooling.



# Radiation damage limit of materials?

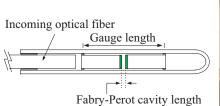
Many materials turn to powder due to radiation damage once each atom has suffered  $\approx$  one nuclear interaction  $\equiv$  1 DPA (displacement per atom).

The displacements are due to  $\approx 10$ -MeV neutrons.

In a thick target ( $\gtrsim 1$  nuclear interaction length) have  $\approx 10$  10-MeV neutrons per beam proton.

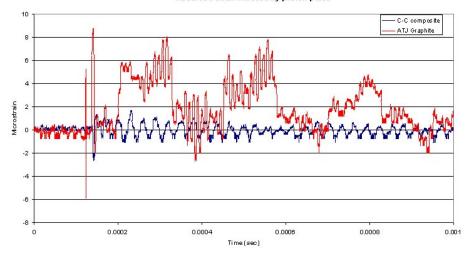
 $\sigma_{np} \approx 4\pi \lambda^2 \approx 10^{-25} \text{ cm}^2$ ;  $\sigma_{nA} \approx 10 \sigma_{np} \approx 10^{-24} \text{ cm}^2$ .

 $\Rightarrow$  Need  $\approx 10^{23}$  protons/cm<sup>2</sup> for 1 DPA.


Empirical result: more like  $10^{22}/\text{cm}^2$  for 1 DPA.

Ex: If 10 Hz of  $10^{15}$  protons/pulse into 0.1 cm<sup>2</sup>, need only  $10^{5}$  pulses = 1 day for catastrophic radiation damage.

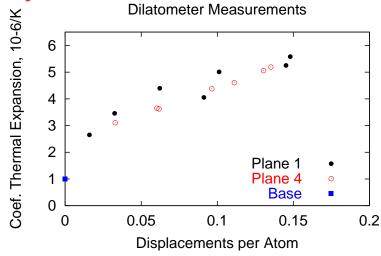



# Lower Thermal Shock If Lower Thermal Expansion Coefficient

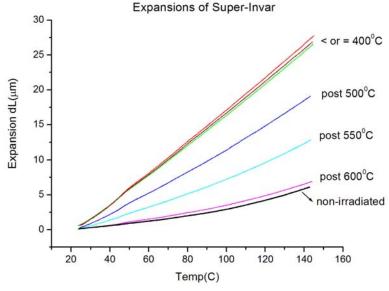
ATJ graphite and a 3-D weave of carbon-carbon fibers instrumented with fiberoptic strain sensors, and exposed to pulses of  $4 \times 10^{12}$  protons @ 24 Gev.






BNL E951 Target Experiment 24 GeV 3.0 e12 proton pulse on Carbon-Carbon and ATJ graphite targets Recorded strain induced by proton pulse

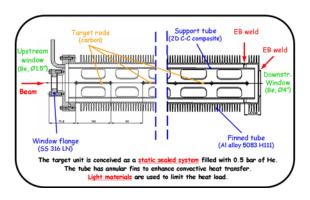



Carbon-carbon composite showed much lower strains than in the ordinary graphite – but readily damaged by radiation!

Thermal expansion coefficient of engineered materials is affected by radiation.

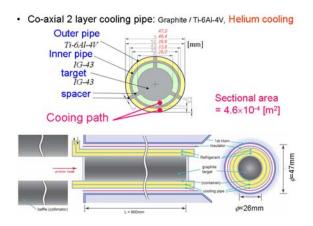
Super-Invar: CTE vs. dose:

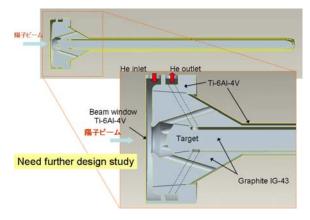



Super-Invar: recovery of the CTE by thermal annealing:

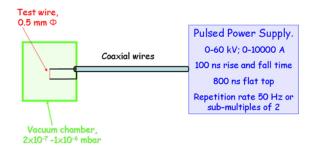


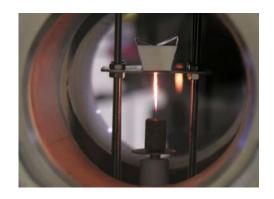


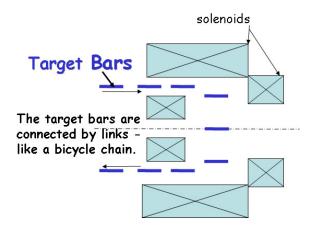

## Recent/Ongoing Solid Target Projects


CNGS Target System (R. Bruno, NuFact06) Up to  $7 \times 10^{13}$  400-GeV protons every 6 s. Beam  $\sigma = 0.5$  mm. 5 interchangeable graphite targets. Designed for 0.75 MW.







JPARC  $\nu$  Horn Target (Y. Hayato, NuFact06) Up to  $4 \times 10^{14}$  50-GeV protons every 4 s. Beam  $\sigma = 4$  mm. Designed for 0.75 MW. He gas cooling.





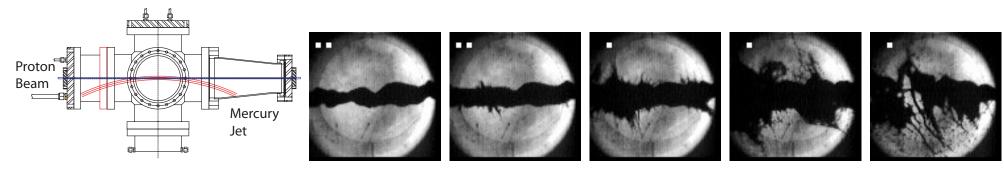

Pulsed-Current Studies of Ta & W Wires at RAL (R. Bennett et al.)










# Thermal Issues for Liquid Targets (Neutrino Factory)

Liquid target/dump using mercury, or a Pb-Bi alloy.

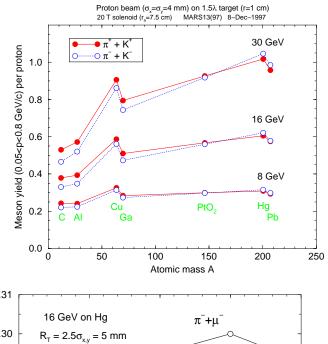
- $\approx 400 \text{ J/gm to vaporize Hg (from room temp)},$
- $\Rightarrow$  Need flow of  $> 10^4$  g/s  $\approx 1$  l/s in target/dump to avoid boiling in a 4-MW beam.

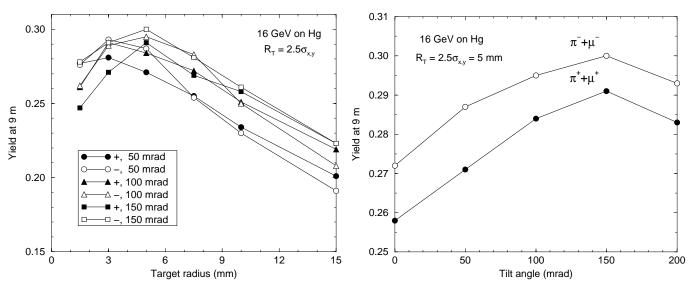
Neutrino Factory Study 2 design has 1.5 l/s flow of Hg, so no critical thermal issues.

Energy deposited in the mercury target (and dump) will cause dispersal, but at benign velocities (10-50 m/s).



1-cm-diameter Hg jet in 2e12 protons at t = 0, 0.75, 2, 7, 18 ms (BNL E-951, 2001).


Model (Sievers): 
$$v_{\text{dispersal}} = \frac{\Delta r}{\Delta t} = \frac{r\alpha\Delta T}{r/v_{\text{sound}}} = \frac{\alpha U}{C}v_{\text{sound}} \approx 12.5 \text{ m/s for } U \approx 25 \text{ J/g.}$$

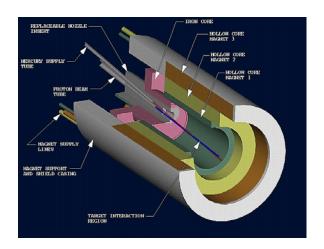

Data:  $v_{\text{dispersal}} \approx 10 \text{ m/s for } U \approx 25 \text{ J/g.}$ 



# Pion/Muon Yield

For  $E_p \gtrsim 10$  GeV, more yield with high-Z target (MARS calculations).






Mercury target radius should be  $\approx 5$  mm, with target axis tilted by  $\approx 100$  mrad to the magnetic axis.

Can capture  $\approx 0.3$  pion per proton with  $50 < P_{\pi} < 400 \text{ MeV}/c$ .



## 20-T Capture Magnet System

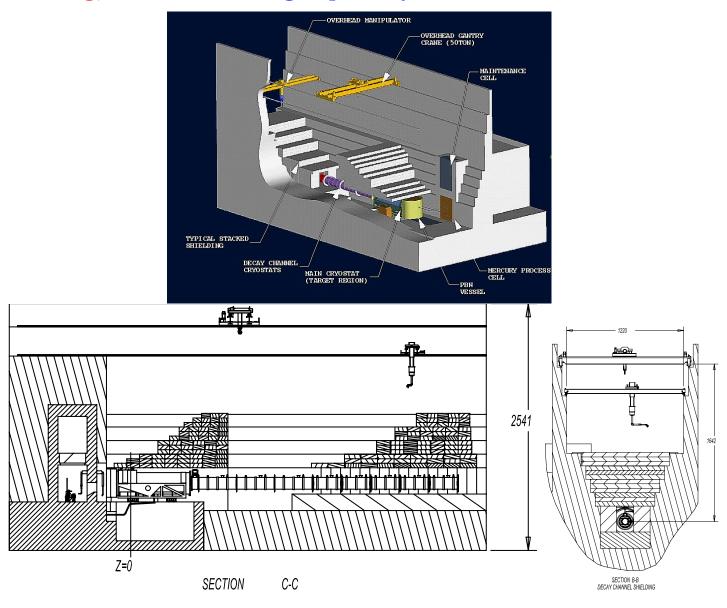


Inner, hollow-conductor copper coils generate 6 T @ 12 MW:

Bitter-coil option less costly, but marginally feasible.

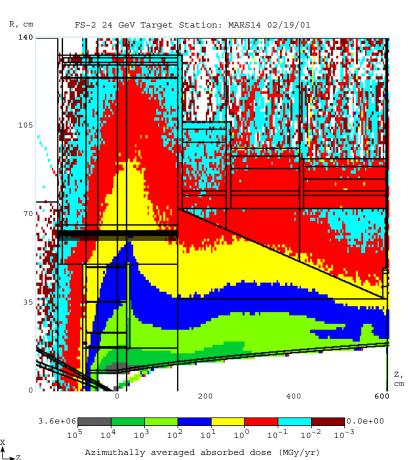
Outer, superconducting coils generate 14 T @ 600 MJ:




Cable-in-conduit construction similar to ITER central solenoid.

Both coils shielded by tungsten-carbide/water.




# Target System Support Facility

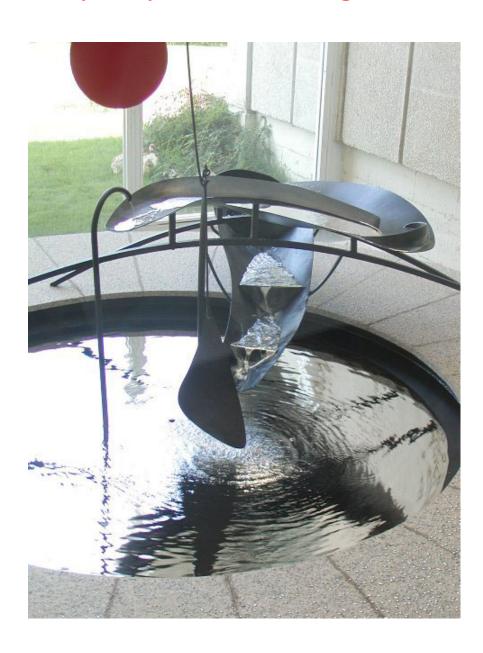
## Extensive shielding; remote handling capability.





# Lifetime of Components in the High Radiation Environment




Some components must be replaceable.

| Component             | Radius | $\mathrm{Dose/yr}$                | Max allowed Dose | 1 MW Life | 4 MW life |
|-----------------------|--------|-----------------------------------|------------------|-----------|-----------|
|                       | (cm)   | $(Grays/2 \times 10^7 \text{ s})$ | (Grays)          | (years)   | (years)   |
| Inner shielding       | 7.5    | $5\times10^{10}$                  | $10^{12}$        | 20        | 5         |
| Hg containment        | 18     | $10^{9}$                          | $10^{11}$        | 100       | 25        |
| Hollow conductor coil | 18     | $10^{9}$                          | $10^{11}$        | 100       | 25        |
| Superconducting coil  | 65     | $5 \times 10^6$                   | $10^{8}$         | 20        | 5         |



# Issues for Liquid Jet Targets

1. Hydrodynamics. 2. Magnetic effects. 3. Beam-induced effects.



A. Calder, Paris (1937):





## Hydrodynamics of Liquid Jet Targets

- Diameter d = 1 cm.
- Velocity v = 20 m/s.
- The volume flow rate of mercury in the jet is

Flow Rate = 
$$vA = 2000 \text{ cm/s} \cdot \frac{\pi}{4} d^2 = 1571 \text{ cm}^3/\text{s} = 1.57 \text{ l/s} = 0.412 \text{ gallon/s}$$
  
= 94.2 l/min = 24.7 gpm. (1)

• The power in the jet (associated with its kinetic energy) is

$$\mathbf{Power} = \frac{1}{2}\rho \cdot \mathbf{Flow} \ \mathbf{Rate} \cdot v^2 = \frac{13.6 \times 10^3}{2} \cdot 0.00157 \cdot (20)^2 = 4270 \ \mathbf{W} = 5.73 \ \mathbf{hp}. \tag{2}$$

• To produce the 20-m/s jet into air/vacuum out of a nozzle requires a pressure

**Pressure** = 
$$\frac{1}{2}\rho v^2 = 27.2 \text{ atm} = 410 \text{ psi},$$
 (3)

IF no dissipation of energy.

• The mercury jet flow is turbulent: the viscosity is  $\mu_{\rm Hg} = 1.5$  cP (kinematic viscosity  $\eta = \mu/\rho = 0.0011$  cm<sup>2</sup>/s), so the Reynolds number is

$$\mathcal{R} = \frac{\rho dv}{\mu} = \frac{dv}{\eta} = 1.8 \times 10^6. \tag{4}$$

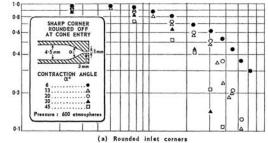
• The surface tension of mercury is  $\tau = 465$  dyne/cm (water = 73),  $\Rightarrow$ 

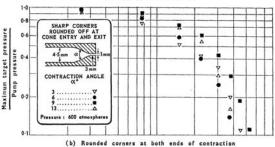
Weber number, 
$$W = \frac{\rho dv^2}{\tau} = 115,000.$$
 (5)

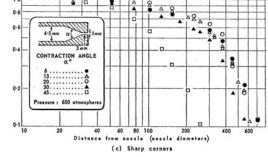


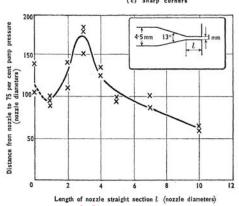
#### Nozzle Lore

# Hg jet for Neutrino Factory:


v = 20 m/s, d = 1 cm,


 $\Rightarrow$  Turbulent flow.


#### Lore:


- Should be able to make a 1-cm-diameter Hg jet go 1-2 m before breakup.
- Area of feed should be  $\gtrsim 10 \times$  area of nozzle.
- $\approx 15^{\circ}$  nozzle taper is good.
- Nozzle tip should be straight, with  $\approx 3:1$  aspect ratio.
- High-speed jets will have a halo of spray around a denser core.
- Low/zero surrounding gas pressure is better.

#### Leach & Walker (1966):









Length of nozzle straight section & (nozzle diameters)

NFMCC MEETING, JAN 29, 2007

# McCarthy & Molloy (1974):

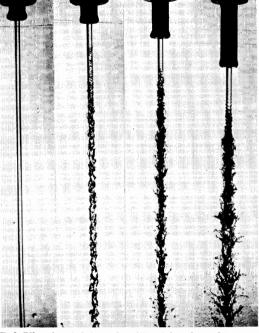
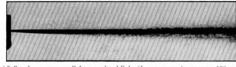




Fig. 5. Effect of nozzle design on the stability of glycerol-water jets.

Jet viscosity 11 cP
Jet velocity 20 m s<sup>-1</sup> (approx.)
Nozzle diameter 2.54 mm
Jet Reynolds no. 4750
Let Ohnesore no. 0.026

Nozzle aspect ratio AR = L/d (see Fig. 7) = 0, 1, 5, 10 L to R.

#### Leach & Walker:



(d) Spark source; parallel transmitted light ( $\frac{1}{2}~\mu s$  exposure); pressure 130 atm



(e) X-ray source (5 min exposure); pressure 130 atm

# Conservation of Energy $vs. \mathbf{F} = d\mathbf{P}/dt$ at a Contraction? (Borda, 1766)

Incompressible fluid  $\Rightarrow V_1A_1 = V_2A_2$ .

$$A_2 \ll A_1 \Rightarrow V_1 \ll V_2$$
.

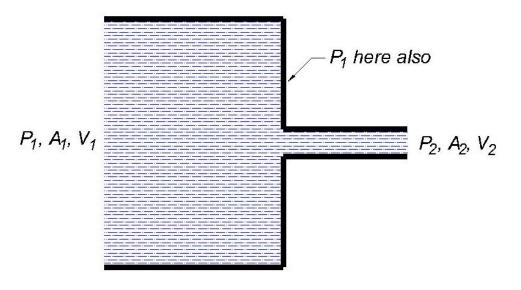
Conservation of Energy  $\Rightarrow$  Bernoulli's

Law:

$$P_1 + \frac{1}{2}\rho V_1^2 = P_2 + \frac{1}{2}\rho V_2^2.$$
 $V_1 \ll V_2 \Rightarrow V_2^2 \approx 2\frac{P_1 - P_2}{\rho}.$ 

Argument does not depend on the area.

$$\mathbf{F} = d\mathbf{P}/dt$$
:


Mass flux =  $\rho VA$ .

Momentum flux =  $\rho V^2 A$ .

Net momentum flux = 
$$\rho(V_2^2 A_2 - V_1^2 A_1)$$
  
=  $\rho V_2 A_2 (V_2 - V_1) \approx \rho V_2^2 A_2$ .

Force  $\approx (P_1 - P_2)A_2$ .

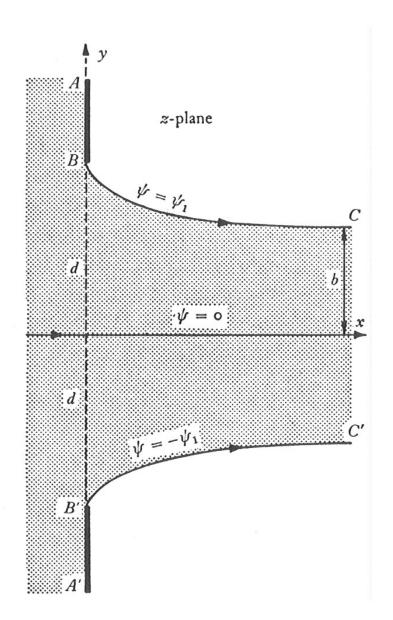
$$\mathbf{F} = \frac{d\mathbf{P}}{dt} \Rightarrow V_2^2 \approx \frac{P_1 - P_2}{\rho}.$$



Consistency  $\Rightarrow$  dissipative loss of energy, OR jet pulls away from the wall and contracts.



#### Vena Contracta


Cavitation can be induced by a sharp-edged aperture.

A jet emerging from a small aperture in a reservoir contracts in area:

$$A_{\text{jet}} = \frac{\pi}{\pi + 2} A_{\text{aperture}} = 0.62 A_{\text{aperture}}$$
$$d_{\text{jet}} = 0.78 \ d_{\text{aperture}}$$

2-d potential flow (conservation of energy)  $\Rightarrow$  analytic form:

$$x = \frac{2d}{\pi + 2}(\tanh^{-1}\cos\theta - \cos\theta), \qquad y = d - \frac{2d}{\pi + 2}(1 + \sin\theta),$$
$$\theta = \text{angle of streamline}, \qquad -\frac{\pi}{2} < \theta < 0.$$



90% of contraction occurs for x < 0.8d.

Good agreement between theory and experiment.

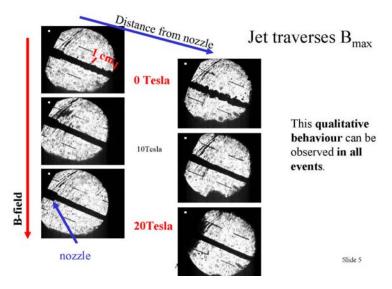


# Magnetic Issues for Liquid Metal Jet Targets

Conducting materials that move through nonuniform magnetic field experience eddy-current effects,  $\Rightarrow$  Forces on entering or leaving a solenoid (but not at its center).

 $\Rightarrow$  Free jet of radius r cannot pass through a horizontal solenoid of diameter D unless

$$v > \frac{3\pi\sigma r^2 B_0^2}{32\rho D} \approx 6 \left[\frac{r}{1 \text{ cm}}\right]^2 \text{ m/s,}$$
 for Hg or Pb-Bi jet,  $D = 20 \text{ cm}, B_0 = 20 \text{ T.}$ 


50-Hz rep rate requires v = 20 m/s for new target each pulse, so no problem for baseline design with r = 0.5 cm. The associated eddy-current heating is negligible.

[Small droplets pass even more easily, and can fall vertically with no retardation.]

A liquid jet experiences a quadrupole shape distortion if tilted with respect to the solenoid axis. This is mitigated by the upstream iron plug that makes the field more uniform.

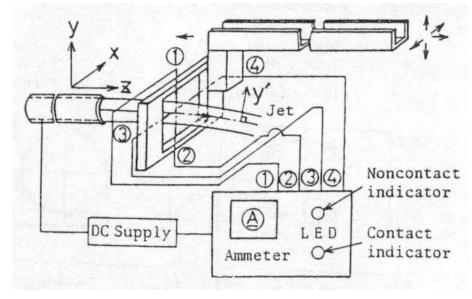
Magnetic damping of surface-tension waves (Rayleigh instability) observed in CERN-Grenoble tests (2002).

The beam-induced dispersal will be partially damped also (Samulyak).

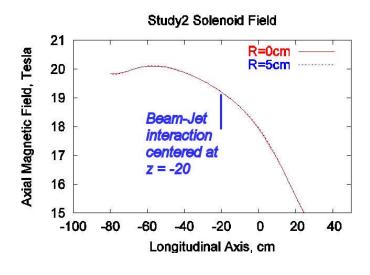


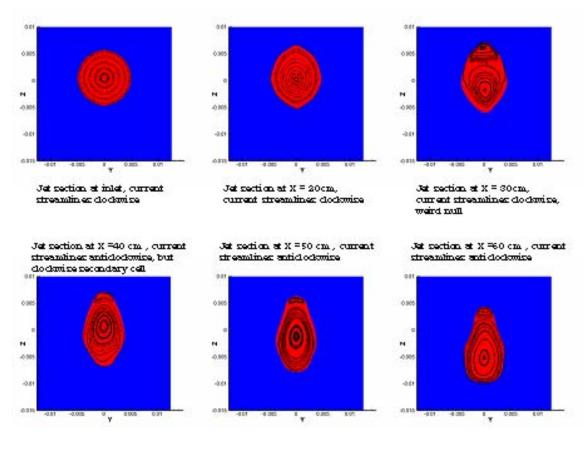
# The Shape of a Mercury Jet under a Non-uniform Magnetic Field

#### S. Oshima et al., JSME Int. J. 30, 437 (1987).







Fig. 10 Cross-sectional shape of the jet obtained by spot a electrode probe

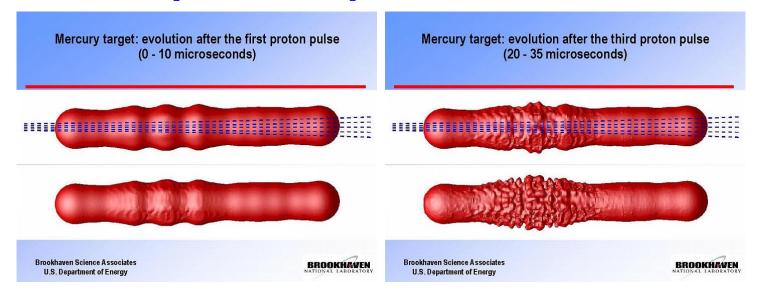



# Simulations of Shape Distortion

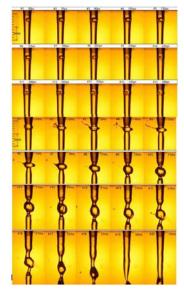
Incompressible code with free liquid surface confirms predictions of shape distortion of a liquid mercury jet that crosses magnetic field lines. (N. Morley, M. Narula; HIMAG).

Mitigate with good uniformity of magnetic field:









# Beam-Induced Effects on a Liquid Jet

Beam energy deposition may disperse the jet.

FRONTIER simulation predicts breakup via filamentation on mm scale:

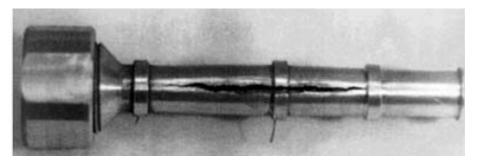


Laser-induced breakup of a water jet:
(J. Lettry, CERN)

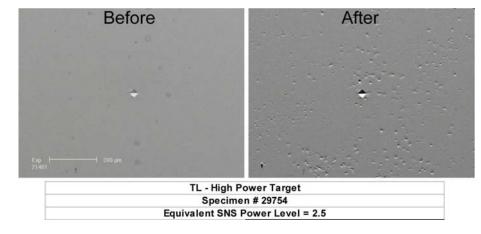


Water jet ripples generated by a 8 mJ Laser cavitation bubble






## Beam-Induced Cavitation in Liquids Can Break Pipes

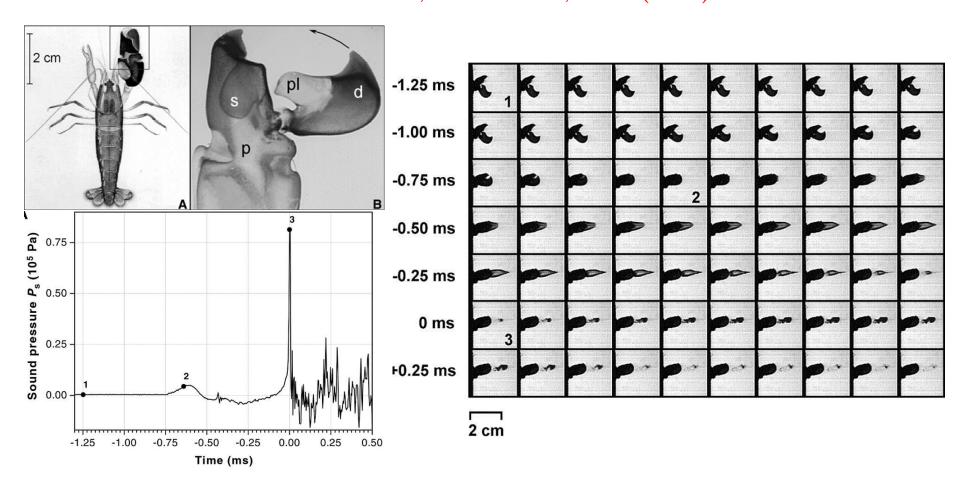

#### **ISOLDE:**



## Hg in a pipe (BINP):



Cavitation pitting of SS wall surrounding Hg target after 100 pulses (SNS):

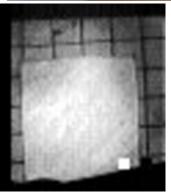


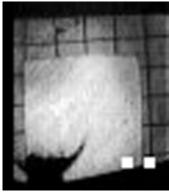

Water jacket of NuMI target developed a leak after  $\approx 1$  month. Likely due to beam-induced cavitation.

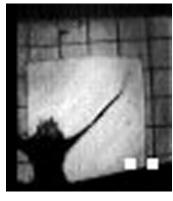
 $\Rightarrow$  Use free liquid jet if possible.



# How Snapping Shrimp Snap: Through Cavitating Bubbles M. Versluis, Science 289, 2114 (2000).

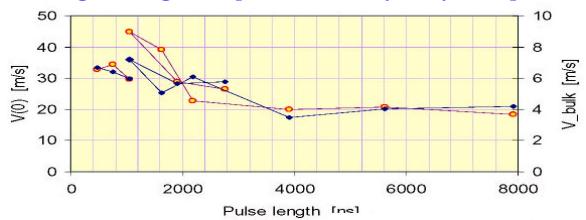




# Passive Mercury Target Tests



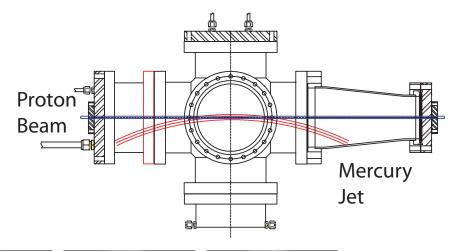
Exposures of 25  $\mu$ s at t = 0, 0.5, 1.6, 3.4 msec,  $\Rightarrow v_{\rm splash} \approx 20 - 40$  m/s:

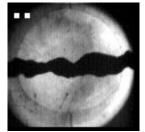


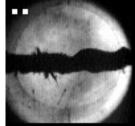


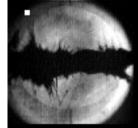


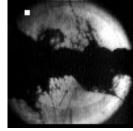


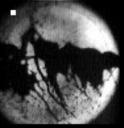


Two pulses of  $\approx 250$  ns give larger dispersal velocity only if separated by  $< 3~\mu s$ .





# Studies of Proton Beam + Mercury Jet


1-cm-diameter Hg jet in 2e12 protons at t = 0, 0.75, 2, 7, 18 ms.













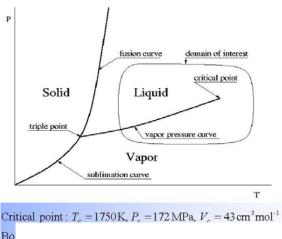

Model:

$$v_{\text{dispersal}} = \frac{\Delta r}{\Delta t} = \frac{r\alpha\Delta T}{r/v_{\text{sound}}} = \frac{\alpha U}{C}v_{\text{sound}} \approx 50 \text{ m/s for } U \approx 100 \text{ J/g.}$$

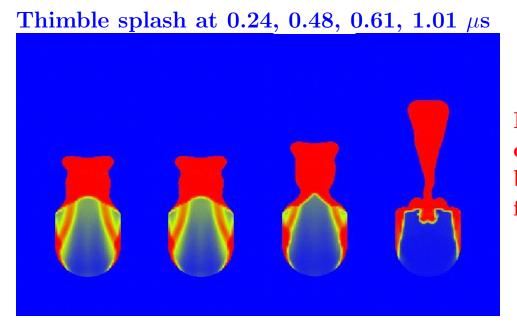
Data:  $v_{\text{dispersal}} \approx 10 \text{ m/s for } U \approx 25 \text{ J/g.}$ 

 $v_{
m dispersal}$  appears to scale with proton intensity.

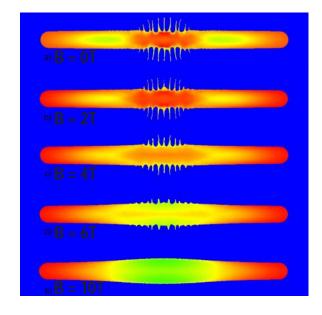
The dispersal is not destructive.


Filaments appear only  $\approx 40 \ \mu s$  after beam,

 $\Rightarrow$  After several bounces of waves, OR  $v_{\text{sound}}$  very low.




# Computational Magnetohydrodynamics (R. Samulyak, J. Du)


Use an equation of state that supports negative pressures, but gives way to cavitation.



Во



Magnetic damping of beam-induced filamentation:



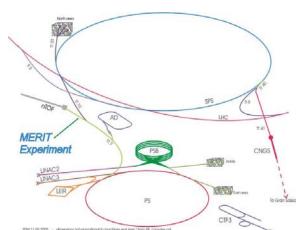


#### What Have We Learned?

- Solid targets are viable in pulsed proton beams of up to 1-2 MW.
- Engineered materials with low coefficients of thermal expansion are desirable, but require further qualification for use at high radiation dose.
- A mercury jet appears to behave well in a proton beam at zero magnetic field, and in a high magnetic field without proton beam.

# Issues for Further Targetry R&D

- Continue numerical simulations of MHD + beam-induced effects (J. Du).
- For solid targets, study radiation damage and issues of heat removal from solid metal targets (carbon/carbon, Toyota Ti alloy, bands, chains, etc.) (N. Simos, R. Bennett).
- Proof-of-Principle test of an intense proton beam with a mercury jet inside a high-field magnet (CERN MERIT experiment, H. Kirk, V. Graves, H.-J. Park).
  - 1. MHD effects in a prototype target configuration.
  - 2. Magnetic damping of mercury-jet dispersal.
  - 3. Beam-induced damage to jet nozzle in the magnetic field.
- Pb-Bi liquid metal targets: solid at room temp, less subject to boiling.




# CERN nToF11 Experiment (MERIT)

- The MERIT experiment is a proof-of-principle demonstration of a free mercury jet target for a 4-megawatt proton beam, contained in a 15-T solenoid for maximal collection of soft secondary pions.
- MERIT = MERcury Intense Target.
- Key parameters:
  - -24-GeV Proton beam pulses, up to 16) bunches/pulse, up to  $2.5 \times 10^{12}$  p/bunch.
  - $-\sigma_r$  of proton bunch = 1.2 mm, proton beam axis at 67 mrad to magnet axis.
  - Mercury jet of 1 cm diameter, v = 20 m/s, jet axis at 33 mrad to magnet axis.
  - $-\Rightarrow$  Each proton intercepts the Hg jet over 30 cm = 2 interaction lengths.
- Every beam pulse is a separate experiment.
  - $-\sim 100$  Beam pulses in total.
  - Vary bunch intensity, bunch spacing, number of bunches.
  - Vary magnetic field strength.
  - Vary beam-jet alignment, beam spot size.



# CERN nToF11 Experiment (MERIT)













KIRK T. McDonald

NFMCC MEETING, JAN 29, 2007



# Advertisement: High-Power Target Workshops

## Past Workshops sponsored by the NFMCC:

- Ronkonkoma (2003)
- ORNL (2005)

## **Upcoming Workshops:**

- EURISOL Target Workshop (CERN, Feb 22, 2007)
- PSI (Sept 10-14, 2007)