

K. Long, 1 February, 2007

ISS summary and IDS

Contents

Motivation

- Facilities and timescales
- ISS summary
 - Physics summary
 - Neutrino Factory accelerator baseline
 - Detector baseline
- The IDS initiative
- Conclusions

Motivation

Neutrinos in the Standard Model:
 Neutrinos are massless
 Helicity distinguishes neutrino and antineutrino
 Lepton flavour is conserved

Neutrino oscillations imply:
 Neutrino mass is not zero
 Neutrino is not an eigenstate of helicity
 Lepton flavour is not conserved

Extension of the Standard Model? Fundamental breakthrough?

SM extension:

The Standard Neutrino Model (SvM):

Three neutrino mass eigenstates mix to produce three neutrino flavour eigenstates:

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

Fundamental breakthrough: Hierarchies and symmetries Horizontal

Properties repeat across generations Within generations properties exhibit patterns (e.g. $\Sigma q = 0$) Particle masses are hierarchical

Why?

The physics of flavour:

- See-saw mechanism gives a 'natural' explanation of both:
 - Small neutrino mass
 - Large lepton mixing angles
 - so neutrino probes physics at very high mass scales
- Create observed baryon asymmetry through heavy, Majorana, neutrinos?

Detailed understanding of properties of neutrino is required to understand the physics of flavour.

Towards specification of required precision

- If physics of flavour due to symmetry
 GUT and/or family
 then
- The quark- and lepton-mixing parameters must be related
- For the theory of flavour to be developed measurements must be sufficiently precise to remove the model-builders freedom
- Challenge to neutrino experimenters:
 - Measure neutrino-mixing parameters with a precision similar to the precision with which the quark-mixing parameters are known

 Second generation super-beam
 CERN, FNAL, BNL,

- J-PARC II
 - MTon H₂O Cherenkov

 Second generation super-beam
 CERN, FNAL, BNL,

- J-PARC II
 - MTon H₂O Cherenkov

Neutrino Factory Magnetised detector

Second generation super-beam

- CERN, FNAL, BNL, J-PARC II
 - MTon H₂O Cherenkov

Neutrino Factory

Magnetised detector

Beta-beam

MTon H₂O
 Cherenkov, liquid argon

Second generation super-beam

> CERN, FNAL, BNL, J-PARC II

> > MTon H₂O Cherenkov

Neutrino Factory

Magnetised detector

Beta-beam

MTon H₂O
 Cherenkov, liquid argon

Precision-era facility must address: Mass hierarchy CP violation θ_{13} $\bullet \theta_{12}, \theta_{23}, \Delta m_{31}^2, \Delta m_{21}^2$ More over: Is θ₂₃ maximal? Is θ₁₃ zero? Beyond the SvM: NSIs MVNs Sterile neutrinos

Science-driven timescale:

Timescale drivers:

By around 2012 – 2016:

- MINOS, OPERA, T2K, NOvA, D-Chooz, etc.:
 - **Better measurement of** θ_{12} , θ_{23} , Δm_{31}^2 , Δm_{21}^2
 - Measurement of, or improved limit on, θ₁₃
 - Perhaps determination of mass hierarchy
- Time to prepare 'ultimate' neutrino programme
- Ultimate programme likely to require significant and novel new facility
- Timely definition of the ultimate programme the responsibility of the neutrino-physics community
- Hence, the 'International Design Study' initiative:
 - The one-year 'International Scoping Study of a future Neutrino Factory and super-beam facility' (the ISS) was the first step on this road

The ISS:

Initiated at NuFact05, concluded at NuFact06: Report now in preparation

Goals:

- Critical comparison of the performance of the three options
- Establish a baseline for the accelerator and detector systems required
- i.e. lay the foundations for a detailed International Design study leading to conceptual design report(s)
- Work of ISS carried out in three working groups:
 - Physics (convener Y. Nagashima, Osaka)
 - Accelerator (convener M. Zisman, LBNL)
 - Detector (convener A. Blondel, Geneva)
 - Overall coordination via Programme Committee chaired by P. Dornan, Imperial

Performance comparison

Second-generation super-beam

- Options considered:
 - **SPL** \rightarrow Frejus: 10 year exposure, on-axis beam
 - Proton beam energy: 2.2/3.5 GeV; neutrino energy: ~0.3 GeV
 - Baseline ~130 km
 - J-PARC → HyperKamiokande: 10 year exposure off-axis beam
 - Proton beam energy: 50 GeV; neutrino energy: ~0.6 GeV
 - Baseline ~295 km
 - T2KK one detector in Japan, second in Korea

Beta beam

- Options considered:
 - Gamma 100; baseline 130 km
 - Gamma 350; baseline 730 km
 - Fluxes:
 - He 2.9 × 10¹⁸ decays per year
 - Ne 1.1 × 10¹⁸ decays per year
- Neutrino Factory

E. Fernandez J.E. Champagne T. Schwetz

> E. Couce P. Hernandez M. Mezzetto T. Schwetz

Neutrino Factory performance:

$\mu^+ \to e^+ \nu_e \overline{\nu}_\mu$	$\mu^- \to e^- \overline{\nu}_e$	
$\overline{ u}_{\mu} ightarrow ar{ u}_{\mu}$	$ u_{\mu} ightarrow u_{\mu}$	disappearance
$\overline{ u}_{\mu} ightarrow \overline{ u}_{e}$	$ u_{\mu} \rightarrow \nu_{e}$	appearance (challenging "platinum"
$\overline{ u}_{\mu} ightarrow ar{ u}_{ au}$	$\nu_{\mu} \rightarrow \nu_{\tau}$	appearance (atm. oscillation)
$ u_e ightarrow u_e$	$\bar{\nu}_e ightarrow \bar{\nu}_e$	disappearance
$ u_e ightarrow u_\mu$	$\bar{ u}_e ightarrow \bar{ u}_\mu$	appearance: "golden" channel
$ u_e ightarrow u_{ au}$	$\bar{\nu}_e \rightarrow \bar{\nu}_\tau$	appearance: "silver" channel

Reference Neutrino Factory:

- 10²¹ useful decays/yr; exposure '5 plus 5' years
- 50kTonne magnetised iron detector (MID) with MINOS performance
- Backgrounds (for golden channel):
 - Right-sign muons
 - Charm decays
- *E*_{res} ~ 0.15 * *E*_v

variable *E_v* bins, efficiency and migration matrices

"Golden"

P. Huber, M. Lindner M. Rolinec W. Winter, A. Donini, et al.

NF: Golden channel optimisation

sin²2θ₁₃: 5σ sensitivity

- Magic baseline (7500 km) good degeneracy solver
- Stored muon energy > 20 GeV

NF: Golden channel optimisation CP violation: 3σ sensitivity

Baseline: 3000 – 5000 km Stored-muon energy > 30 GeV

NF: Multiple baselines:

Plot performance for two 25kT detectors relative to the performance for one 50 kT detector at the magic baseline

Second detector at ~3000 km preferred as it has sensitivity to CP violation

Comparison: CP violation

Comparison: mass hierarchy

Comparison: θ_{13}

Comparison conclusions

Compelling case for precision neutrino programme

- Develop and evaluate methods to discriminate between theories describing the Physics of Flavour
- Evaluate contribution a muon-physics programme can make
- Extensive performance evaluation of super-beam, betabeam, and Neutrino Factory options:
 - Large θ_{13} : $\sin^2 2\theta_{13} > 10^{-2}$
 - Comparable sensitivity

■ ⇒ need to include cost and schedule considerations in evaluating optimum ■ Intermediate θ_{13} : 5×10⁻⁴ < sin² 2 θ_{13} < 10⁻²

- Neutrino Factory better, beta beam competitive
 - need to include cost and schedule considerations in evaluating optimum
- Low θ_{13} : sin² 2 θ_{13} < 5 × 10⁻⁴
 - With present assumptions Neutrino Factory out-performs other options
 - need to include cost and schedule considerations in evaluating optimum

Clear motivation to move from ISS phase to full 'International Design Study' phase

Neutrino Factory: ISS baseline

Proton-driver baseline: energy

 Optimum energy for high-Z targets is broad, but drops at low-energy

Proton-driver baseline: bunch length

Proton-driver baseline:

Proton Driver

- specify parameters, not design
 - implicitly assumes liquidmetal target

<u>Parameter</u>	<u>Value</u>
Energy (GeV)	10 ± 5
Beam power (MW)	4
Repetition rate (Hz)	≈50
No. of bunch trains	3,5ª)
Bunch length, rms (ns)	2 ± 1
Beam duration ^{b)} (μs)	≈40

^{a)}Values ranging from 1–5 possibly acceptable. ^{b)}Maximum spill duration for liquid-metal target.

Options:		
FFAG		
RCS		
Linac		

Proton-driver baseline:

Transmutation

600MeV

Linac (Superconducting)

Linac

(Normal Conducting) 400MeV

Proton Driver

- specify parameters, not design
 - implicitly assumes liquidmetal target

<u>Parameter</u>	<u>Value</u>
Energy (GeV)	10 ± 5
Beam power (MW)	4
Repetition rate (Hz)	≈50
No. of bunch trains	3,5ª)
Bunch length, rms (ns)	2 ± 1
Beam duration ^{b)} (μs)	≈40

^{a)}Values ranging from 1–5 possibly acceptable. ^{b)}Maximum spill duration for liquid-metal target.

Neutrinos to SuperKamiokande 50 GeV

Synchrotron

Proton-driver baseline:

3.85 × 10⁸ protons/µbunch

 $l_b(\text{total}) = 44 \text{ ps}$ $\varepsilon^* \dots = 0.6 \text{ µm r.m.s}$

Proton Driver

- specify parameters, not design
 - implicitly assumes liquidmetal target

<u>Parameter</u>	<u>Value</u>
Energy (GeV)	10 ± 5
Beam power (MW)	4
Repetition rate (Hz)	≈50
No. of bunch trains	3,5ª)
Bunch length, rms (ns)	2 ± 1
Beam duration ^{b)} (μs)	≈40

^{a)}Values ranging from 1–5 possibly acceptable. ^{b)}Maximum spill duration for liquid-metal target.

 1.62×10^{12} protons/bunch l_b (rms) = 1 ns (on target)

Target baseline:

•Neutrino Factory solenoid capture system

Solenoid: captures both signs

Tapers from 20 T, 15 cm to 1.75 T, 60 cm over 20 m

Optimum material study performed:
 Liquid mercury, baseline (consider PbBi)
 Operation at 4 MW:

Limitation from target or from beam dump ...

Cooling vs acceptance

Specification: μ/p = 0.17 implies require:

 45 π mm acceptance in downstream accelerator if no cooling – not clear this can be achieved

Baseline:

- Cooling channel (FS2a) to deliver 30 π mm beam
- Challenging specification for accelerator (and cooling channel)

Acceleration

- Compare different schemes on an even footing
 - RLA, scaling FFAG, non-scaling FFAG
 - ${\scriptstyle \circ}\, \text{consider}$ implications of keeping both sign muons
 - consider not only performance but relative costs
 - bring scaling FFAG design to same level as non-scaling design
- Look at implications of increasing acceptance
 - transverse and longitudinal
 - ${\scriptstyle \circ}$ acceptance issues have arisen in non-scaling case
 - leading to exploration of a revised acceleration scenario

DECAY RINGS

Working hypothesis :

- Compare alternatives and trade-offs, racetrack and triangular
- Implications of final energy (20 GeV, 50 GeV) on design
- Allow 3 π cm stored emittance
- Assume both signs muons \rightarrow one or two rings.
- Consider double baseline
- Radiation issues at 10²¹µ/10⁷s

Goal : decide on racetrack versus triangle

Some fundamental criteria considered at the present stage :

- Efficiency
- Number of rings, number of tunnels, for two detectors
- Constraint of geometry on baseline angles.
 Flexibility in choice of site
- Construction 10-15 degs. to horizontal / near vertical
- Total depth ($\approx 0.25 0.3 \mathcal{C}$)
- Muon bunch structure impact on efficiency, ring geometry, etc.
- RF requirements
- Apertures and fields needed

Detectors and instrumentation

Information from ISS Detector group

- Detector options and subgroups
 - Large water Cherenkov
 - ISS activity focuses on consideration of R&D required:
 - Photo tubes
 - Front-end electronics
 - Omit further comment
 - Liquid argon
 - Emulsion
 - Magnetic sampling calorimeter
 - Near detector
- Further instrumentation issues:
 - Flux, muon-polarisation measurement

Detector technology: summary

Detector	Mass	Solar	SN	Atm	Nucleon	Superbeam, β -beam		ν -factory	
	\mathbf{kt}				decay	subGeV	${\rm GeV}$	10's GeV	10's GeV
WC	$\simeq 1000$	8	yes	yes	yes	yes	8	no	no
LAr	$\simeq 100$	yes	yes	yes	yes	yes	yes	yes	yes (μ -catcher)
Magnetized LAr	$\simeq 25$	yes	yes	yes	yes	yes	yes	yes	$e^{\pm}, \mu^{\pm}, \tau^{\pm}$
Magnetized	$\simeq 50$	no	no	μ^{\pm}	no	2	yes	yes	μ^{\pm}
sampling Cal.									
Non-magnetized	$\simeq 50$	no	no	μ 's	no	×	yes	yes	no
sampling Cal.									
Emulsion	$\simeq 1$	no	no	no	no	no	Ж	yes	τ^{\pm}
hybrid									

Magnetised liquid argon:

Golden, platinum, and silver channels accessible

Magnetised sampling calorimeter:

- Golden channel accessible
 - Sampling fraction:
 - Can totally active 'get' some silver or platinum sensitivity
- Hybrid detector system?

Magnetised Segmented Detectors

 Golden channel signature: "wrong-sign" muons in magnetised calorimeter
 9xMINOS (5.4 kT)

- Baseline technology for a NuFact far detector
- Issues: segmentation, electron ID, readout technology (RPC or scintillator?), muon threshold need R&D to resolve these
- A ~100 kton detector with a B-field of 1.4 T is considered feasible

2/1/2007

Totally Active Scintillating Detector

Simulation of a Totally Active Scintillating Detector (TASD) using Nova and Minerva concepts with Geant4 Ellis, Bross

- 3333 Modules (X and Y plane)
- Each plane contains 1000 slabs
- Total: 6.7M channels

- Momenta between 100 MeV/c to 15 GeV/c
- Magnetic field considered: 0.5 T
- Reconstructed position resolution ~ 4.5 mm

2/1/2007

beam	Far detector	R&D needed
sub-GeV BB and SB (MEMPHYS, T2K)	Megaton WC	photosensors! cavern and infrastructure
few GeV BB and SB (off axis NUMI, high γ BB, WBB)	no established baseline TASD (NOvA-like) or Liquid Argon TPC or Megaton WC	photosensors and detectors long drifts, long wires, LEMs
Neutrino Factory (20-50 GeV, 2500-7000km)	~100kton magnetized iron calorimeter (golden) + ~10 kton non-magnetic ECC (silver)	straight forward from MINOS simulation+physics studies ibid vs OPERA

The IDS initiative

High-sensitivity v-oscillation facility second half of next decade Decision point 2012

Double CHOOZ.

T2K, NOvA,

J-PARC,

SNS. ...

The European strategy for particle physics

The European strategy for particle physics

6. Studies of the scientific case for future neutrino facilities and the R&D into associated technologies are required to be in a position to define the optimal neutrino programme based on the information available in around 2012; *Council will play an active role in promoting a coordinated European participation in a global neutrino programme*.

The IDS initiative

High-sensitivity v-oscillation facility second half of next decade

The European strategy for particle physics

The European strategy f

6. Studies of the scientific case fo and the R&D into associated te be in a position to define the op based on the information availal will play an active role in promoparticipation in a global neutrino p Revealing the Hidden Nature of Space and Time: Charting the Course for Elementary Particle Physics http://books.nap.edu/catalog/11641.html

EPP2010

Executive Summary

3. Expand the program in particle astrophysics and pursue an internationally coordinated, staged program in neutrino physics.

Strategic Principle 3. As the global particle physics research program becomes increasingly integrated, the U.S. program in particle physics should be planned and executed with greater emphasis on strategic international partnerships. The United States should lead in mobilizing the interests of international partners to jointly plan, site, and sponsor the most effective and the most important experimental facilities.

Action Item 5. The committee recommends that the properties of neutrinos be determined through a well-coordinated, staged program of experiments developed with international planning and cooperation.

Towards a future high-intensity neutrino programme

The ISS Programme Committee

High-precision measurements of neutrino oscillations are required

It is widely recognised that a precise and detailed knowledge of the properties of the neutrino is of the highest scientific importance. High-precision accelerator-based measurements of neutrino oscillations are an essential part of the programme required to determine these properties.

Three classes of facility have been proposed to serve the high-precision era: second-generation super-beam experiments; beta-beam facilities; and the neutrino factory. The cost of each of these options is significant making it likely that the particle-physics community will eventually have to make choices. The oriteria upon which these choices will be made include: the measured values of the oscillation parameters, in particular the value of θ_{15} ; the physics reach and the cost of each of the proposed facilities; and the schedule on which each facility can be implemented. It is important that the best possible information be available at the time the decisions are needed. For each option, significant investment in hardware R&D and engineering design is required for a Conceptual Design Report (CDR) to be produced.

The International Scoping Study of a future Neutrino Factory and super-beam facility (the ISS), which presented its conclusions at NuFact06 (24 – 30 August, 2006, Irvine, California) studied the physics case for high-precision measurements of the properties of the neutrino, compared the performance of the different options on an equal footing, and outlined a number of accelerator and detector baseline scenarios for a neutrino factory that now need to be carried forward in a design study.

Timescale

The decision on the precision accelerator-based neutrino-oscillation programme should be possible soon after the reactor and long-baseline neutrino oscillation experiments which are presently being implemented, have provided information on the key parameter 0₁₀. Meeting this timescale requires that CDRs for the considered facilities be available by ~2012. In addition, it is important that interim design reports (IDRs) containing reliable estimates of performance and cost are available by ~2010. It is anticipated that at this time, LHC results being available, decisions on the infrastructure needed for the high-energy-frontier exploration will be made. For substantial neutrino infrastructures to be included in olars for the future of the field appropriate IDRs will need to be available.

The International Design Study initiative

In order to provide the information required, full design studies of the super-beam, beta-beam, and neutrino factory options are needed. To support the instigation of the various studies, and to provide a degree of oversight during the design-study period, it is proposed that an organisation such as that shown in figure 1 be put in place. The three separate design studies would each be initiated by those seeking to propose a particular option, and would be carried out in parallel.

The teams carrying out the studies would be strongly encouraged to work together on areas of common interest. The detector requirements for beta-beams and super-beams are very similar as are the multi-Wegawatt proton driver and target for the neutrino factory and super-beam. The over-arching synergy, the neutrino-oscillation science driver, is recognised in the form of the Neutrino Oscillation Physics Working Group, which is envisioned to continue the work of performance evaluation and comparison that was initiated through the ISS. The regional oversight bodies could provide a degree of coordination.

To facilitate the initiation of the various design studies, the ISS Programme Committee seeks to produce a short document, to be published alongside the ISS report, that will summarise the R&D roadmap to the decision point in ~2012.

NuFact06 mandate

Timescale

The decision on the precision accelerator-based neutrino-oscillation programme should be possible soon after the reactor and long-baseline neutrino oscillation experiments which are presently being implemented, have provided information on the key parameter θ_{13} . Meeting this timescale requires that CDRs for the considered facilities be available by ~2012. In addition, it is important that interim design reports (IDRs) containing reliable estimates of performance and cost are available by ~2010. It is

Timescale: overview

	2	2006		2006		T	2007		2008		2009)	2010		2011		201		2
Community oversight and 'clock-ticks'				Ι						-										
NuFact workshops					ł															
Neutrino Factory roadmap				Τ																
International scoping study (ISS)																				
International design study (IDS)																			•	
Milestones			-																	
Initiate Neutrino Factory IDS						Ì														<u>.</u>
Interim Design Report								X	-4			-44			٠					
Conceptual design report																			•	
Key decision points						:													<u> </u>	:
IDS mandate at Nufact06			•																	
Submit FP7 bids			1 		¢			4-		-			Г	IDS initiativo						
Second-generation neutrino programme													Ľ			110			,	÷

Components:

Neutrino oscillation physics working group

IDS initiative: status

AhSG: two meetings:
08Dec06, 05Jan07
IDS www page:

- http://www.hep.ph.ic.ac.uk/ids
- IDS mailing lists being set up
 - Morphed from ISS mailing lists
- Next meetings:
 - 19-21 February, CERN: ISS report editorial meeting
 - 29-31 March, CERN: ISS→IDS meeting

IDS initiative: status

Ad hoc steering group:

Steering Group	Windows Internet Explorer					
💽 🗸 🙋 http	p://www.hep.ph.ic.ac.uk/ids/organisatio	n/steering.html		Google	2	
🗧 🏟 🌈 Steering	g Group			🟠 🔹 📾 🔹 🔂 Page 🔹 🤅		
			Int	ernational Design Study o Neutrino Fact	of the O ry	
ORGANISATION	WORKING GROUPS DOCU	IMENTATION COMMUN	' R	epresentation on	ad-hoc steering	group
Ad-hoc St	leering Group		ISS Programme Committ	ee		
Meetings	_		P. Dornan A. Blondel	<u>P.Dornan@imperial.ac.uk</u> <u>Alain.Blondel@cern.ch</u>	ISS Programme Committee C ECFA study group leader	;hair
Meeting	Date/time	Agenda	M. Zisman	mszisman@lbl.gov	ISS Programme Committee ISS Programme Committee NFMCC Project Manager	
3	09Feb07, 14:00 GMT	Agenda	Y. Nagashima	nagashimayori@ybb.ne.jp	ISS Programme Committee	
2	05 Jan07 22:00 GMT	Agenda	International partners		-	
2	0000101, 22.00 0101	Agenda	V. Palladino	Vittorio.Palladino@na.infn.it	BENE coordinator	Europe
1	08Dec06, 14:00 GMT	Agenda [R.Edgecock@rl.ac.uk	R.Edgecock@rl.ac.uk	NF coordinator on FP7	Europe
					DS proposal	
			N. Mondal	<u>nkm@tifr.res.in</u>	INO spokesman	India
			Y. Mori	<u>yoshiharu.mori@kek.jp</u>	NuFact-J spokesman	Japan
			Y. Kuno	kuno@phys.sci.osaka-u.ac.jp	NuFact-J spokesman	Japan
			A. Bross	bross@fnal.gov	NFMCC spokesman	US
			H. Kirk	hkirk@bnl.gov	NFMCC spokesman	US
			K. Long	K.Long@Imperial.AC.UK	UKNF spokesman	UK
			P. Soler	p.soler@physics.gla.ac.uk		UK
			Observers – making the l	link with other design-study act	ivities in Europe	
			M. Dracos	marcos.dracos@ires.in2p3.tr	SB coordinator on FP7 DS pro	oposal
			M. Lindroos	Mats.Lindroos@cern.ch	BB coordinator in FP6 Eurison	
					Acting coordinator BB for FP/	' DS

Draft V2

International Design Study of the Neutrino Factory

17 January 2007

The principal objective of the International Design Study of the Neutrino Factory (the IDS) is to deliver a design report in which:

- The physics performance of the Neutrino Factory is detailed and the specification of each of the
 accelerator, diagnostic, and detector systems that make up the facility is defined;
- The schedule for the implementation of the Neutrino Factory facility is presented;
- The cost of the Neutrino Factory accelerator, the diagnostics, and the detector systems are
 presented at a level of accuracy appropriate for the report to inform a decision to initiate the
 Neutrino Factory project; and
- The outstanding technical and financial uncertainties are documented and an appropriate uncertainty-mitigation plan is presented.

This report, the Reference Design Report (RDR), is required in 2012/13. As a step on the way, an Interim Design Report (IDR) is required in 2010/11. The purpose of this note is to define the terms RDR and IDR.

The Interim Design Report

Principal objectives

The Interim Design Report has three functions: it marks the point in the IDS at which the focus turns to the engineering studies required to deliver the RDR; it documents the baseline for the accelerator complex, the neutrino detectors, and the instrumentation systems. It also defines example sites to be taken forward in the RDR; and it forms the basis of the proposals required to deliver the RDR. The IDR must therefore contain engineering designs of each of the accelerator, diagnostic, and detector systems that make up the facility together with estimates of the cost and schedule accurate at the 50% level. In addition, the IDR must contain a detailed, precisely-costed, plan of the work required to deliver the RDR. This plan must include a description of the hardware R&D work required to address any outstanding technological or systems-integration issues that must be addressed before the RDR can be completed. To avoid the additional cost incurred unnecessary engineering multiple designs, the transition from IDR phase to the RDR phase implies the implementation of an appropriate change-control procedure.

The Reference Design Report

The Reference Design Report is conceived as the basis on which a request for the resources to carry out the first phase of the Neutrino Factory project can be made. The Neutrino Factory project necessarily encompasses detailed design work, a continuing R&D programme by which the technical and cost uncertainties are managed, and the initial stages of the construction of the facility itself.

For the RDR to be used to support such a proposal requires that the cost and schedule estimates must be robust, accurate at the 30% level, and that an appropriate evaluation of contingency has been carried out. The RDR must therefore contain sufficient engineering detail on each subsystem to demonstrate that the cost and schedule estimates are robust at this level.

AhSG: o/p

πU

Neutrino Factory IDS

Goal of NF IDS:

- Neutrino Factory RDR (~2012):
 - Engineering designs for most components

Neutrino Factory IDR (~2010):

- Marks transition from:
 - Concept development and R&D with engineering support to:
 - Significant engineering effort with concept-development and R&D programmes to mitigate risks, begin to address sitespecific issues

Tasks:

Indicative only!
 Clearly a 'big job'

 Require international collaboration
 Hardest task:

 Initiate the activity

IDS				
Conceptual design phase				
Technical design phase				
Mangement and coordination				
Development of key accelerator systems				
Proton driver		1 1 1		1
Proton driver front end				
Proton-injector linac prototypes				
Target and capture				
Proof-of-principle experiment: MERIT				
Engineering demonstrators				
Bunch-rotation and cooling				
Engineering demonstration: MICE				
Demonstration of components: MuCool				1
Second phase ionisation cooling development				
Rapid acceleration	 			
Non-scaling FFAG proof of of principle: EMMA				
Storage ring			[]	
Component R&D and site investigations				
Generic technology development				
RF				
Power sources				
Accelerating structures				
Magnets				
Large apperture, high field				
High-current, rapid rise-time power supplies				1
High-T _c conductor development				1
Development of instrumentation systems		1		
High-resolution/high-granularity option				1
Development of liquid argon or other techniques				
High-mass, large volume option	 			
Development of tracking calorimeter option				
Large volume magnetisation	 			
High critical temperature, novel magnets				
Near detector				
Development of elements of spectrometer				
Detectors for cross section measurement etc				
Generic technology development	 			
Photo sensors				
Long drift in nobel gases				
TASD: electronics				
Accelerator-complex instrumention	 			
Polarimeter for luminosity monitoring				
Beam divergence monitor				
Near detector Development of elements of spectrometer Detectors for cross section measurement etc. Generic technology development Photo sensors Long drift in nobel gases TASD: electronics Accelerator-complex instrumention Polarimeter for luminosity monitoring Beam divergence monitor				

2007/08 2008/09 2009/10 2010/11 2011/12

Synergy:

Technologies and systems have application in a number of facilities Planning of **IDS** must recognise, and seek to benefit from, these synergies

			Ne		Europ	Mate	_	Interr
	Su		utrin	Muo	ean (Inert rial I	.HC I	natio
	Iper	3eta	io Fa	n Co	Spal S	ial F rrad F:	umir up	nal L Co
	bean	bean	actor	ollide	latio ourc	usio iatio acilit	nosit grad	₋inea ollide
velopment of key accelerator systems	<u> </u>	3	×	-	© ⊐	2 3 3	θΥ	
Proton driver								
Proton driver front end								
Proton-injector linac prototypes								
Proton acceleration (linac & rings)								
Proof of principle experiment MEDIT								
							,	
Engineering demonstrators								
Demonstration of components: MuCool								
Second phase ionisation cooling development		•••••		•••••				
Rapid acceleration								
Non-scaling FFAG proof of of principle: EMMA								
Storage ring								
Component R&D and site investigations								
eneric technology development								
۲F								
Power sources								
Accelerating structures								
<i>l</i> agnets								
Large apperture, high field								
High-current, rapid rise-time power supplies								
High-T _C conductor development								
evelopment of instrumentation systems								
ligh-resolution/high-granularity option								
Development of liquid argon or other techniques								
ligh-mass, large volume option								
Development of tracking calorimeter option								
arge volume magnetisation								
High critical temperature, novel magnets								
lear detector								
Development of elements of spectrometer								
Detectors for cross section measurement etc.								
Seneric technology development								
Photo sensors							·	
Long drift in nobel gases								
Delerimeter for luminopity menitoring								
beam unvergence monitor								

Conclusions

Opportunity:

Outstanding case for the development of high-precision neutrino-oscillation facility

Vibrant international concept-development and R&D programme in place

- The ISS
- MICE
- MERIT
- EMMA

Clear motivation and mandate for the next step: The International Design Study

Imperative: establish partnership that can carry out the IDS

... make the Neutrino Factory a realistic proposition

Contributions from the UK

Physics:

- Discussions between experimenters and theorists/phenomenologists in hand to define joint proposal (S.Pascoli, Durham)
 - First meeting 26Feb07 @ Imperial
- Detector:
 - Discussion of 'seed-corn' proposal starting (P.Soler, Glasgow)
 - First meeting 26Feb07 @ Imperial
- Accelerator:
 - Proton driver:
 - CCLRC, Imperial, Warwick
 - Target/capture:
 - Brunel, CCLRC, Glasgow, Sheffield, Warwick
 - Muon front-end:
 - Brunel, CCLRC, Cockcroft, Glasgow, Imperial, Liverpool, Oxford, Sheffield
 - Acceleration:
 - CCLC, Imperial, Oxford
 - Storage ring:
 - CCLRC

EU FP7 Design Study proposal DS proposal in preparation; deadline 5pm 2nd May! Limited resources: 5MEUR from EU; 5M from EU partners Duration: 4 years; main objective: CDRs Includes SB, NF and BB Focus on certain "key questions" only Fine for IDS More difficult to deliver CDRs Goals and partners currently being defined