

Optical Diagnostics

HeeJin Park

Design Specification

- Limited space
- High radiation area
- Non-serviceable area
- Passive components only, no active electronics
- Image transmits through flexible imaging fiber bundle

Optical Diagnostics Principle : Shadowgraphy technique

- Synchronized arrival of short laser pulses illuminate onto the target
- Freeze the image of events using high speed camera to record transient fluid dynamics.
- 2-dimensional image

Optical Setup

High Speed Cameras and Laser Sources

CERN Olympus Encore PCI 80005 4 kHz recording rate, 25 us electronic shutter

Bright Solutions, BDL20-808-F6

Parameter	Value	Unit
Temperature	25	°C
Rated power	20	w
Current at rated power	35.38	А
Maximum current	41.63	А
Threshold current	9.2	А
Center wavelegth	808.6	nm
Linewidth FWHM	2.64	nm

min. pulse width ~150 ns

NATIONAL LABORATORY Instrumentation Division Ultrafast Laser Laboratory

Experimental Setup: Schematic Diagram

Instrumentation Division Ultrafast Laser Laboratory

Experimental Setup: Trigger Pulse Sequence

Instrumentation Division Ultrafast Laser Laboratory

Experimental Setup at ORNL

Viewport Configuration

Top View

20 m/s shot, Reduced SS nozzle after 180 degree bend (Tested at ORNL, Nov 30, 2006)

20 m/s shot, Reduced Ti nozzle after 180 degree bend, Tested at ORNL, Jan 25, 2007)

B

Tested at ORNL, Nov 30, 2006

View port #2	Velocity(m/s)		Jet Width(mm)	Jet Width(mm)
Nozzle #	10 m/s shot	20 m/s shot	10 m/s shot	20 m/s shot
A Nozzle	9.82	19.64	9.20	27.57
B Nozzle	9.82	19.64	10.19	38.59
C Nozzle	9.82	21.61	9.85	10.28
D Nozzle	9.82	19.64	10.07	20.08

Tested at ORNL, Jan 25, 2007

Ti Nozzle	Velocity (m/s)		Jet Width (mm)		
	10 m/s shot	20 m/s shot	10 m/s shot	20 m/s shot	
View port #1	-	-	11 ~ 14	8 ~ 15	
View port #2	11.4	15.3	11.7 ~ 13	7.2 ~ 9.5	
View port #3	-	-	8.6 ~ 12.4	6.3 ~ 8.1	

Nozzle C showed stable shape and uniform velocity.

Clear typical surface motion should be observed to get accurate velocity measurement. It could lead to measurement error.

For Ti nozzle, jet width decreases as the jet moves to downstream.

- four 10-meter long imaging fibers assembled on SS primary
- SS primary are pressure tight (20 psi)
- Dynamic image collection on all viewports were tested
- Channel #0 scintillating fiber
- Channel #1 1st viewport, old FastVision camera
- Channel #2 2nd viewport, SMD camera
- Channel #3 3rd viewport, new FastVision camera
- Channel #4 4th viewport, video camera/Olympic Encore
- Magneto hydro dynamic effect to the jet shape will be observed / measured at MIT after solenoidal magnet is integrated.

