

Concluding Remarks

NFMCC Collaboration Meeting

UCLA

February 1, 2007

Harold G. Kirk Brookhaven National Laboratory

MERIT MICE Mucool ISS Solid Target Studies 6-D Cooling

The State of the Collaboration is Excellent!

The MERIT Experiment

MERcury Intense Target

Beam on Target July 2007

The MICE Experiment

Beam Characterization August 2007

The MTA is the focus of Mucool activities:

- RF testing (805 and 201 MHz)
- High pressure H₂ gas-filled RF
- LH₂ Absorber tests
- High Intensity Beam
 - Will start with low intensity

International Scoping Study

Solid Target Studies

BNL-Materials Irradiation at BLIP

RAL-Longevity Studies with High Energy Depositions

6D Cooling Studies

Low Energy Neutrino Factory -- S. Geer A Three Pass Cooling Channel -- G. Rees EMMA -- R. Edgecock IDS – Ken Long High Field Solenoids – R. Palmer, Muons Inc

MERIT ' - Pb-Bi Eutectic

NATIONAL LABORATORY

Low Energy Neutrino Factory

Totally Active Scintillator Detector

Muon Charge separation down to 400 MeV/c Major Issue: Insert magnet field in 15m x 15m x 100m volume

Re-circulator End Loop

Kicker -9°

 $BN - 42^{\circ}$

 $BP + 51^{\circ}$

 $BR - 45^{\circ}$

 $BD + 45^{\circ}$

 $BD + 45^{\circ}$

 $BD + 45^{\circ}$

Mirror symmetry for return bends

BN BP BR BD BD BD

The EMMA Cell

EMMA "Dipole"s + Quads

Pipe apertures:	-21.6 to 20.7	-6.1 to 18.8
Vertical:	17.8	23.4
Shifts:	4.9 to 10.2	28.7 to 48.6

Goal: Study beam dynamics in a non-scaling FFAG machine

Goal: Unified cost-optimized solution for a Neutrino Factory by <u>2010</u> (IDR). Engineered design by <u>2012</u> (RDR).

The International Design Study (IDS) will build on the successful conclusion of the International Scoping Study (ISS) in which an international study team developed a unified set of parameters for a future Neutrino Factory.

The year 2012 is significant in that Europe's LHC debt will be retired by that year.

HTS 50T Solenoid

Enable final cooling for a Muon Collider

Pb-Bi Eutectic (LBE)

Advantages: Solid at room temperature High-Z High boiling point (1670°C - less cavitation?) Less toxic than Hg

Disadvantages: 125°C operating temperature Polonium production

- MERIT experiment: Beam in July 2007
- MICE experiment: First Beam Fall 2007
- EMMA project: 2007-2010
- Participate in International Design Study: 2007-2010
 - FFAG studies
 - Storage ring designs
- Collaborate with FNAL MCTF and Muons, Inc: 2007-2010
 - Develop 6D cooling lattices
 - 50T Solenoid R&D
 - 1-2 TeV Acceleration
 - Collider designs

