

The MERIT Experiment

NFMCC Collaboration Meeting

UCLA

January 29, 2007

Harold G. Kirk Brookhaven National Laboratory

Experimental Goals

The MERIT (nTOF11) Experiment

- Study single beam pulses with intensities up to 30TP
- Study influence of solenoid field strength on Hg jet dispersal (B_o from 0 to 15T)
- Study 50 Hz operations scenario
- Study cavitation effects in the Hg jet by varying PS spill structure—Pump/Probe
- Beam on target July 2007
- Confirm Neutrino Factory targetry concept

The MERIT (nTOF11) Experiment

MERcury Intense Target

Target Test Site at CERN

The Tunnel Complex

Neutrino Fack

- 14 and 24 GeV Proton beam
- Up to 30 x 10¹² Protons (TP) per 2µs spill
- Proton beam spot with $r \le 1.5 \text{ mm rms}$
- 1cm diameter Hg Jet
- Hg Jet/Proton beam off solenoid axis
 - Hg Jet 33 mrad
 - Proton beam 67 mrad
- Test 50 Hz operations
 - 20 m/s Hg Jet
 - 2 spills separated by 20 ms

- PS will run in a harmonic 16 mode
- We can fill any of the 16 rf buckets with sub-bunches at our discretion.
- Each microbunch can contain up to 2.5 TP.
- \bullet Fast extraction can accommodate entire 2µs PS fill.
- Extraction at 24 GeV
- Partial/multiple extraction possible at 14 GeV
- Beam on target July 2007

The PS Beam Profile allows for:

- Varying beam charge intensity from 4 TP to 30 TP.
- Studying influence of solenoid field strength on beam dispersal

(vary B_o from 0 to 15T).

- Study possible cavitation effects by varying PS spill structure (Pump/Probe)
- Study 50 Hz operation.

15T Pulsed Solenoid 5.5 MVA Power Supply LN₂ Cryo-system Hg Jet Delivery System (Van Graves) **Optical Diagnostics (H. Park)** CERN Infrastructure (I. Efthymiopoulos) Simulations (Jian Du)

High Field Pulsed Solenoid

- 80° K Operation
- 15 T with 5.5 MVA Pulsed Power
- 15 cm warm bore
- 1 m long beam pipe

Peter Titus, MIT

Pulsed Solenoid Milestones

Delivery to MIT Reception Testing Integration Testing Ship to CERN Installation at CERN January 06 March 06 February 07 February 07 March 07

The Pulsed Solenoid

15T at MIT March 30, 2006

CVIP December 2005

Layout of MIT Integration Test

Pulsed Solenoid in the MIT test pit

Cryosytem Layout

LN₂ and N₂ gas stored on the surface.

- Cold valve box in the TT2 tunnel.
- Exhaust gas vented into TT10 tunnel through filtration system.
- ~ 150 liters of LN₂ per Magnet pulse.

Magnet flushed with N₂ prior to each pulse, to minimize activation of N_2 .

The Hg Jet System

SS Nozzles

Nozzle A – diameter reduction after bend, 2.5° nozzle angle

Nozzle B – reduction before bend, 2.5° nozzle angle

Nozzle C – test nozzle with reduction after bend, straight nozzle tip, internally similar to nozzle A

The Princeton Ti Nozzle

The Princeton Ti Nozzle (cont)

