3 GeV, 1.2 MW, RCS Booster and 10 GeV, 4.0 MW, NFFAG Proton Driver

G H Rees, ASTeC, RAL

Introduction

Studies for the ISS:

- 1. Proton booster and driver rings for 50 Hz, 4 MW and 10 GeV.
- 2. Pairs of triangle and bow-tie, 20 (50 GeV) μ^{\pm} decay rings.

Studies after the ISS:

- 1. A 3 5.45 MeV electron model for the 10 GeV, proton NFFAG.
- 2. An alternative proton driver using a 50 Hz, 10 GeV, RCS ring.
- *3.* A three pass, μ^{\pm} cooling, dog-bone re-circulator

Proton Driver Parameter Changes for ISS

- Pulse repetition frequency F = 15 to 50 Hz
- 4 MW, proton driver energy T = (8 or 26) to 10 GeV
- No. of p bunches & μ^{\pm} trains n = 1 to (3 or 5)
 - Reasons for the changes:
- For adiabatic proton bunch compression to ~ 2 ns rms
- For lower peak & average beam currents in μ[±] rings
- To allow partial beam loading compensation for the μ[±]

Bunch Train Patterns

Schematic Layout of 3 GeV, RCS Booster

Booster Betatron and Dispersion Functions

Parameters for 50 Hz, 0.2 to 3 GeV Booster

- Number of superperiods
- Number of cells/superperiod
- Lengths of the cells
- Free length of long straights
- Mean ring radius
- Betatron tunes (Q_v, Q_h)
- Transition gamma
- Main dipole fields
- Secondary dipole fields
- Triplet length/quad gradient

4 4(straights) + 3(bends) 4(14.0995) + 3(14.6) m16 x 10.6 m 63.788 m 6.38, 6.30 6.57 0.185 to 1.0996 T 0.0551 to 0.327 T 3.5 m/1.0 to 5.9 T m⁻¹

Beam Loss Collection System

Choice of Lattice

- ESS-type, 3-bend achromat, triplet lattice chosen
- Lattice is designed around the H⁻ injection system
- Dispersion at foil to simplify the injection painting
- Avoids need of injection septum unit and chicane
- Separated injection; all units between two triplets
- Four superperiods, with >100 m for RF systems
- Locations for momentum and betatron collimation
- Common gradient for all the triplet quadrupoles
- Five quad lengths but same lamination stamping
- Bending with 20.5° main & 8° secondary dipoles

Schematic Plan of H⁻ Injection

Optimum field for n = 4 & 5, H° Stark state lifetimes.

0.0551 T, Injection Dipole

- Horizontal painting via field changes, momentum ramping & rf steering
- Separated system with all injection components between two triplets.
- H^- injection spot at foil is centred on an off-momentum closed orbit.

Electron Collection after H⁻ Stripping

Foil lattice parameters : $\beta_v = 7.0 \text{ m}$, $\beta_h = 7.8 \text{ m}$, $D_h = 5.3 \text{ m}$, $D_h / \sqrt{\beta_h} = 1.93 \text{ m}^{\frac{1}{2}}$

 H^- parameters at stripping foil ; $\beta_v = 2.0 \text{ m}$, $\beta_h = 2.0 \text{ m}$, $D_h = 0.0 \text{ m}$, $D_h' = 0.0$

Anti-correlated, H⁻ Injection Painting

Why Anti-correlated Painting?

Assume an elliptical beam distribution of cross-section (a, b). The transverse space charge tune depressions/spreads are :

 $\delta Q_v = 1.5 [1 - S/\int (\beta_v ds / b(a+b))] \delta Q_v (uniform)$

 $4S = \int [\beta_v / b(a+b)^2] [(y^2 (a + 2b)/ 2b^2) + (x^2/a)] ds$

Protons with (x = 0, y = 0) have $\delta Q_v = 1.5 \ \delta Q_v$ (uniform distrib.) Protons with (x = 0, y = b) have $\delta Q_v \sim 1.3 \ \delta Q_v$ (uniform distrib.) Protons with (x = a, y = 0) or (x = a/2, y = b/2) have ~ 1.3 factor. δQ shift is thus less for anti-correlated than correlated painting. The distribution may change under the effect of space charge.

Emittances and Space Charge Tune Shifts

Design for a Laslett tune shift (uniform distribution) of $\delta Q_v = 0.2$. An anti-correlated, elliptical, beam distribution has a $\delta Q_v = 0.26$.

For 5 10¹³ protons at 200 MeV, with a bunching factor of 0.47, the estimated, normalised, rms beam emittances required are:

 $\varepsilon_{\sigma n} = 24 \ (\pi) \ mm \ mrad$ $\varepsilon_{max} = 175 \ (\pi) \ mm \ mrad$

The maximum, vertical beam amplitudes (D quads) are 66 mm. Maximum, horizontal beam amplitudes (in F quads) are 52 mm.

Maximum, X motions at high dispersion regions are < 80 mm. Max. ring/collimator acceptances are 400/200 (π) mm mrad.

- Horizontal deflections for the kicker and septum magnets
- Rise / fall times for 5 (3) pulse, kicker magnets = 260 ns
- Required are 4 push-pull kickers with 8 pulser systems
- Low transverse impedance for (10 Ω) delay line kickers
- Extraction delays, ΔT , from the booster and NFFAG rings
- *R* & *D* necessary for the RCS and the Driver pulsers

RF Parameters for 3 GeV Booster

- Number of protons per cycle
- *RF cavity straight sections*
- Frequency range for h = n = 5
- Bunch area for h = n = 5
- Voltage at 3 GeV for $\eta_{sc} < 0.4$
- Voltage at 5 ms for $\varphi_s = 48^\circ$
- Frequency range for h = n = 3
- Bunch area for h = n = 3
- Voltage at 3 GeV for $\eta_{sc} < 0.4$
- Voltage at 5 ms for $\varphi_s = 52^\circ$

5 10¹³ (1.2 MW) 106 m

2.117 to 3.632 MHz 0.66 eV sec 417 kV 900 kV

1.270 to 2.179 MHz 1.1 eV sec 247 kV 848 kV

Schematic Layout of Booster and Driver

Homing Routines in Non-linear, NFFAG Program

- A linear lattice code is modified for estimates to be made of the non-linear fields in a group of FFAG magnets.
- Bending radii are found from average field gradients between adjacent orbits & derived dispersion values, D.
- D is a weighted, averaged, normalized dispersion of a new orbit relative to an old, and the latter to the former.
- A first, homing routine obtains specified betatron tunes.
 A second routine is for exact closure of reference orbits
- A final, limited-range, orbit-closure routine homes for γ-t.
 Accurate estimates are made for reference orbit lengths.
- Full analysis needs processing the lattice output data & ray tracing in 6-D simulation programs such as Zgoubi.

Non-linear Fields and Reference Orbits

- Low ampl. Twiss parameters are set for a max. energy cell.
- Successive, adjacent, lower energy reference orbits are then found, assuming linear, local changes of the field gradients.
- Estimates are repeated, varying the field gradients for the required tunes, until self-consistent values are obtained for:

the bending angle for each magnet of the cell the magnet bending radii throughout the cell the beam entry & exit angle for each magnet the orbit lengths for all the cell elements, and the local values of the magnet field gradients

The Non-linear, Non-scaling NFFAG

- Cells have the arrangement:
- The bending directions are :
- Number of magnet types is:
- Number of cells in lattice is:
- The length of each cell is:
- The tunes, Q_h and Q_v, are:
- Non-isochronous FFAG:

O-bd-BF-BD-BF-bd-O

-	+	+	+	-
		3		
		66		

12.14 m 20.308 and 15.231 $\xi_v \approx 0$ and $\xi_h \approx 0$

- Gamma-t is imaginary at 3 GeV, and ≈ 21 at 10 GeV
- Full analysis needs processing non-linear lattice data & ray tracing in 6-D simulation programs such as Zgoubi

Lattice Cell for the NFFAG Ring

Lengths and angles for the 10.0 GeV closed orbit

10 GeV Betatron & Dispersion Functions

Gamma-t vs. γ for the Driver and E-model						
	Proton Driver		Electron Model			
	γ= E/Eo	gamma-t	γ=E/Eo	gamma-t		
	11.658	21.8563	11.658	19.9545		
	10.805	23.1154	10.980	22.4864		
	10.379	23.9225	10.393	24.2936		
	9.953	24.8996	9.806	28.9955		
•	9.100	27.6544	9.219	51.1918		
•	8.673	29.7066	8.632	34.7566 i		
•	8.247	32.5945	8.045	19.6996 i		
•	7.608	40.0939	7.458	14.2350 i		
•	6.968	64.0158	6.871	11.8527 i		
	4.197	18.9302 i (imag.)	_	_		

Loss Levels for NFFAG Proton Driver

- Beam power for the 50 Hz Proton Driver = 4 MW
- Total loss through the extraction region < 1 part in10⁴
- Average loss outside coll./ extr. region < 1 part in10⁴
- Total loss in primary & sec. collimators = 1 part in10³
- Remotely operated positions for primary collimators.
- Quick release water fittings and component flanges.
- Local shielding for collimators to reduce air activation.

Vertical Collimation in the NFFAG

3 GeV proton beam 10 GeV proton beam

Coupling may limit horizontal beam growth

Loss Collection for the NFFAG

- Vertical loss collection is easier than in an RCS
- ΔP loss collection requires beam in gap kickers
- Horizontal beam collimation prior to the injection
- Horizontal loss collection only before the ejection
- Minimize the halo growth during the acceleration
- Minimise non-linear excitations as shown later.

NFFAG Loss Collection Region

- Direct beam loss localised in the collection region
- Beam 2.5 σ , Collimator 2.7 σ and Acceptance 4 σ

NFFAG Non-linear Excitations

Cells Q_{v} 3rd Order Higher Order Q_h 0.25 $nQ_{h}=nQ_{v}$ & 4th order 4 0.25 zero 5 0.20 $nQ_{h}=nQ_{v}$ & 5th order 0.20 zero 0.166 0.166 $nQ_{h}=nQ_{v}$ & 6th order 6 zero $nQ_{h}=nQ_{v}$ & 9th order 9 0.222 0.222 zero 13th except $3Q_{h}=4Q_{v}$ 13 4/133/13 zero to

Use $(13 \times 5) + 1 = 66$ such cells for the NFFAG Variation of the betatron tunes with amplitude? γ -t imaginary at low energy and ~ 20 at 10 GeV

Bunch Compression at 10 GeV

For 5 proton bunches: Longitudinal areas of bunches = 0.66 eV sec Frequency range for a h of 40 = 14.53-14.91 MHz Bunch extent for 1.18 MV/ turn = 2.1 ns rms Adding of h = 200, 3.77 MV/turn = 1.1 ns rms

For 3 proton bunches: Longitudinal areas of bunches = 1.10 eV sec Frequency range for a h of 24 = 8.718-8.944 MHz Bunch extent for 0.89 MV/ turn = 3.3 ns rms Adding of h = 120, 2.26 MV/turn = 1.9 ns rms

Booster and Driver tracking studies are needed

50 Hz, 10 GeV, RCS Alternative

- Same circumference as for the outer orbit of the NFFAG
- Same box-car stacking scheme for the μ^{\pm} decay rings
- Same number of proton bunches per cycle (3 or 5)
- Same rf voltage for bunch compression (same gamma-t)
- Increased rf voltage for the proton acceleration (50% ?)
- 3 superperiods of (15 arc cells and 6 straight sections)
- 5 groups of 3 cells in the arcs for good sextupole placings
- 2 quadrupole types of different lengths but same gradient
- 2 dipole magnet types, both with a peak field of 1.0574 T

10 GeV NFFAG versus RCS

Pros:

- Allows acceleration over more of the 50 Hz cycle
- No need for a biased ac magnet power supply
- No need for an ac design for the ring magnets
- No need for a ceramic chamber with rf shields
- Gives more flexibility for the holding of bunches

Cons:

- Requires a larger (~ 0.33 m) radial aperture
- Needs an electron model to confirm viability

R & D Requirements

Development of an FFAG space charge tracking code. Tracking with space charge of booster and driver rings.

Building an electron model for NFFAG proton driver. Magnet design & costing for RCS, NFFAG & e-model.

Development of multiple pulse, fast kicker systems. Site lay-out drawings & conventional facilities design

NFFAG study (with beam loading) for μ^{\pm} acceleration