

# The Main Injector Particle Production experiment

#### Andrew Godley

for the MIPP Collaboration: BNL, Colorado, EFI Fermilab, Harvard, IIT, Iowa, Indiana, Livermore, Michigan, South Carolina, Virginia

Muon 07 UCLA January 2007



University of South Carolina High Energy Physics Group

#### **MIPP** overview

- Measure particle production off various nuclei
- Incoming secondary beams of π<sup>±</sup>, K<sup>±</sup> and p<sup>±</sup> from 5 to 80 GeV/c or primary p beam from the Main Injector (120 GeV/c)
- Large acceptance spectrometer featuring a Time Projection Chamber
- Measure momentum of all charged particles produced
- Identify particles with dE/dx, ToF, differential and ring imaging Cerenkovs.



## **MIPP** Physics

#### Particle Physics

- Non-perturbative QCD hadron dynamics, Particle fragmentation scaling laws (MIPP can test general scaling law in 36 reactions)
- Spectroscopy Search for missing baryon resonances, glueballs

#### Nuclear physics

- Y-scaling (Measure cross sections of hadrons on nucleons in the nuclear medium.)
- Propagation of strangeness through nuclei
- Service measurements
  - □ Hadron shower models in Geant4, MARS,...
  - Proton radiography, stockpile stewardship, national security applications
  - □ Neutrino production (NuMI, T2K, MiniBooNE, atmospheric)
  - □ v-factory

A Godley, MIPP, Muon 07

#### Application to neutrino experiments



Distribution of hadrons decaying to produce neutrinos at the MINOS far (top) and near detectors

A Godley, MIPP, Muon 07

- Hadron production is largest uncertainty in neutrino flux prediction
- Existing hadron production data sparse
- Measure production from NuMI target
- Use event by event measurement as input to NuMI beam simulator (replace Fluka target)
- Also use to tune beam simulations and fits
- Thin C, AI and Be targets also measured – help simulate interactions downstream of the target
- Combine thin and thick target data to benchmark cascade calculations in thick targets

#### Data collected

- Ran throughout 2005 and first two months of 2006
- 5 thin targets Be, C, Al, Bi, U
- 7 million Liquid Hydrogen triggers
- 1.78 million triggers on the NuMI target
- 14 million triggers with no TPC (faster data rate) for Kaon mass measurement from RICH ring diameter
- First reconstruction pass completed – DST produced for analyses

| Data Summary<br>27 February 2006 |                           |                | Acquired Data by Target and Beam Energy<br>Number of events, x 10 <sup>6</sup> |      |      |      |      |       |      |      |      |       |
|----------------------------------|---------------------------|----------------|--------------------------------------------------------------------------------|------|------|------|------|-------|------|------|------|-------|
| Target                           |                           |                | E GeV/c                                                                        |      |      |      |      |       |      |      |      |       |
| z                                | Element                   | Trigger<br>Mix | 5                                                                              | 20   | 35   | 40   | 55   | 60    | 65   | 85   | 120  | Total |
|                                  | <b>Empty</b> <sup>1</sup> | Normal         |                                                                                | 0.10 | 0.14 |      |      | 0.52  |      |      | 0.25 | 1.01  |
| 0                                | K<br>Mass <sup>2</sup>    | No Int.        |                                                                                |      |      | 5.48 | 0.50 | 7.39  | 0.96 |      |      | 14.33 |
|                                  | Empty<br>LH <sup>1</sup>  | Normal         |                                                                                | 0.30 |      |      |      | 0.61  |      | 0.31 |      | 7.08  |
| 1                                | LH                        | Normal         | 0.21                                                                           | 1.94 |      |      |      | 1.98  |      | 1.73 |      |       |
| 4                                | Be                        | p only         |                                                                                |      |      |      |      |       |      |      | 1.08 | 1 75  |
| -                                |                           | Normal         |                                                                                |      | 0.10 |      |      | 0.56  |      |      |      | 1.75  |
| 6                                | С                         | Mixed          |                                                                                |      | _    |      |      | 0.21  |      |      |      | 1 33  |
|                                  | C 2%                      | Mixed          |                                                                                | 0.39 |      |      |      | 0.26  |      |      | 0.47 | 1.55  |
|                                  | NuMI                      | p only         |                                                                                |      |      |      |      |       |      |      | 1.78 | 1.78  |
| 13                               | Al                        | Normal         |                                                                                |      | 0.10 |      |      |       |      |      |      | 0.10  |
| 83                               | Bi                        | p only         |                                                                                |      |      |      |      |       |      |      | 1.05 | 2.83  |
| 05                               |                           | Normal         |                                                                                |      | 0.52 |      |      | 1.26  |      |      |      | 2.05  |
| 92                               | U                         | Normal         |                                                                                |      |      |      |      | 1.18  |      |      |      | 1.18  |
| Total                            |                           |                | 0.21                                                                           | 2.73 | 0.86 | 5.48 | 0.50 | 13.97 | 0.96 | 2.04 | 4.63 | 31.38 |

### Beam particle ID and trigger

- Tag incoming particle, use two upstream Cerenkov detectors
- >85% purity (tested with RICH)
- Can use beam TOF for 5 GeV/c (and lower)
- Added small scintillator trigger upstream of thin targets
- Combined with multiplicity in first drift chamber
- Purpose built scintillator trigger for NuMI target



#### **TPC Reconstruction**



From raw TPC data form clusters of hits in Z slices, then form tracks and the vertex

#### TPC distortion effects:

Inhomogeneous magnetic field causes drift electrons to deviate from path to readout

Corrections applied using a measured magnetic field map
 Distortion offects neuro c 2mm

 $\Box$  Distortion effects now < 3mm

A Godley, MIPP, Muon 07

#### **Chamber Alignment**

- First determine Drift Chamber time offsets
- Compute residual of track fits for each wire when it is NOT used in the fit, move plane (of wires) within 30% of this residual and iterate
- Then align chambers together using beam tracks that hit all 3 beam and 6 post target chambers, or secondary tracks that hit all 6 post target chambers
- Original alignment found problems in the survey and its implementation in our geometry and in the field maps – Corrected
- Average RMS of wire plane alignment is now ~60µm







### Tracking

- Basic procedure is to fit TPC tracks then match track candidates from chambers to these TPC tracks
- Improvements: Track merging (eliminate duplicates), included high angle tracks (needed for vertexing)
- Kalman filter based tracking also being developed for TPC and then global tracking



A Godley, MIPP, Muon 07

### Particle ID - TPC

- TPC dE/dx already shows reasonable Pi/K/P separation
- Calibrate anode voltage and drift times
- Normalise dE/dx to minimum ionization level
- Continue improving dE/dx resolution
- Then extract Particle ID probabilities





### Particle ID – TOF and CKOV

- Calibrating delays of individual bars in TOF wall
- With rough timing and previous tracking can see proton band
- Calibration of CKOV light levels in progress



tofvelvsmomc

#### Particle ID - RICH

- ID by radius of cerenkov ring
- Ring finding and fitting algorithms complete



#### Secondary Tracks



#### **Reconstruction Summary**

- New deterministic annealing vertexing method improves vertex resolution
- Developing tracking with Kalman-filter based technique (RecPack) in parallel to current tracking efforts
- New DST production in a month to include these major improvements
- TPC, TOF and Differential Cerenkov PID continuing
- Full detector Monte Carlo almost complete
   Recreates different target and running conditions



#### Physics analyses in progess

- Target fragmentation multiplicities
- Hanbury Brown and Twist quantum interfence effect
- Charged kaon mass
- Soft pion production cross sections
- Proton and antiproton production cross sections



#### MIPP Upgrade - Hardware

- Hundred fold increase in data taking rate record 5 million events per day from limited beam (spill every 2 minutes)
- TPC readout electronics limit data taking (30Hz)
  use ALICE ALTRO chips
- JGG coil replacement
- New silicon pixel trigger (B-TeV design) with veto
- New chamber electronics
- New TOF/CKOV readout eletronics (TripT chip)
- New Recoil detector
- DAQ upgrade
- Beamline optics and shielding run with 1 to 85 GeV/c beam

### **MIPP Upgrade - Physics**

- More MINOS target statistics, NOvA target and others (MiniBooNE, T2K)
- Pi and K production cross sections on liquid nitrogen for atmospheric neutrino or cosmic ray experiments
- Larger list of targets:
  - H<sub>2</sub>, D<sub>2</sub>, Li, Be, B, C, N<sub>2</sub>, O<sub>2</sub>, Mg, Al, Si, P, S, Ar, K, Ca, Fe, Ni, Cu, Zn, Nb, Ag, Sn, W, Pt, Au, **Hg**, Pb, Bi, U
- Target area to be reengineered can accommodate any unusual target system – but need details soon
- ILC Tagged neutral beams and higher statistics for hadron shower simulations
- ILC calorimeters need to achieve 30%/√E current shower simulators are in a poor state (see HSSW06)
- Limiting factor is manpower, new collaborators welcome!

### Summary

- MIPP collected 17 million events that will address a broad range of physics
- Reconstruction is being finalised, preliminary analysis results expected throughout the summer
- Upgrade work is ongoing. Most of the new electronics is designed. Encouragement from Fermilab management for the upgrade but our proposal needs more support to be approved
- The upgrade will allow MIPP to drastically improve its statistics of complete particle coverage events
- Current plan is to start commissioning run in Q1 2008
- New collaborators most welcome opportunities to have specific NFMC targetry data taken
- Excellent training for students and postdocs