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Problems for Muon Dynamics Simulations

e Large phase space has to be transported - requires careful treatment
of nonlinear effects

e Elements have large aperture compared to their length, so have sig-
nificant fringe fields

e Fringe fields for many of the elements are absolutely non-negligible

However, field computations are difficult:

e Often field models are assumed only on axis or in midplane - how
do we get the field in space?

e Fields are often represented as large sums of field contributions of
current loops, current sheets, block solenoids etc

e Off-axis form of these field formulas involve elliptic integrals or other
complicated expressions that have to be approximated somehow. On-
axis or midplane fields much simpler.

Thus, for particle tracking, significant effort necessary to just compute
the field that a particle sees.
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Figure 1: Layout and parameters of the solenoid based ring cooler.
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Construction of FODO Quad Cooling Cell

1/2 1/2
abs rf rf rf D\ |abs

COOLING CELL PHYSICAL PARAMETERS:

Quad Length 0.6 m
Quad bore 0.6 m
Poletip Field ~1T
Interquad space 04-0.5m
Absorber length 0.35m*
RF cavity length 04-0.7m*
Total cooling cell length 4m

*The absorber and the rf cavity can be made longer if allowed to extend into the ends of the magnets.
Or, more rf can be added by inserting another FODO cell between absorbers

In this design

== For applications further upstream at larger emittances, this channel can support a 0.8 m
bore, 0.8 m long quadrupole with no intervening drift without matching to the channel described
here.



Local Multipole Expansion

Instead of computing fields for each particle, rather

e Compute one local field expansion for a particular value of arclength s
e Apply this field expansion to all particles (mere polynomial operation)

e Can also use this information for compuation of transfer map (requires
multipole fields)

Advantages of this approach
e Significantly faster: field evaluation is only polynomial evaluation
e Particle pushing effort independent of complexity of the element

e Need field formulas only in midplane or on axis (they are much
simpler there)

e Field is automatically order-by-order Maxwellian

e Motion is automatically order-by-order Symplectic (if integrated with
symplectic integrator)
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Transtfer Map Method and Differential Algebras

e The transfer map M is the flow of the system ODE.
Zr = M(Z,0),
where Z; and Z; are the initial and the final condition, § is system para-
meters.

e For a repetitive system, only one cell transfer map has to be computed.
Thus, it is much faster than ray tracing codes (i.e. tracing each individual
particle through the system).

e The Differential Algebraic method allows a very efficient computation of
high order Taylor transfer maps.

e The Normal Form method can be used for analysis of nonlinear behavior.
Differential Algebras (DA)

e it works to arbitrary order, and can keep system parameters in maps.

e very transparent algorithms; effort independent of computation order.

The code COSY Infinity has many tools and algorithms necessary.



Field Description in Differential Algebra

There are various DA algorithms to treat the fields of beam optics efficiently.
For example, DA PDE Solver

e requires to supply only

— the midplane field for a midplane symmetric element.
— the on-axis potential for straight elements like solenoids, quadrupoles,
and higher multipoles.
e treats arbitrary fields straightforwardly.

— Magnet (or, Electrostatic) fringe fields:
The Enge function fall-off model

1
 14exp(ar +ag- (s/D)+ ... +ag- (s/D)5)
where D is the full aperture.
Or, any arbitrary model including the measured data representation.

F(s)

— Solenoid fields including the fringe fields.
— Measured fields: E.g. use Gaussian wavelet representation.
— Etc. etc.



DA Fixed Point PDE Solvers

The DA fixed point theorem allows to solve PDEs iteratively in
finitely many steps by rephrasing them in terms of a fixed point problem.
Consider the rather general PDE

0 0 0 0 0 0
ala (CLQ%V) bl@y ( &UV) + Claz (CQ%V) = O,

where a;, b;, ¢; are functions of z, y, 2
The PDE is re-written in fixed point form as

e |05,
AL (R () 2 ()

Assume the derivatives of V' and 0V/0y with respect to x and z are
known in the plane y = 0. Then the right hand side is contracting
with respect to y (which is necessary for the DA fixed point theorem), and
the various orders in y can be iteratively calculated by mere iteration.




3D Midplane Laplace Solver

Laplace equation in curvilinear coordinates:

10 oV oV 1 0 ( 1 0V
AV:1+hx8x{( hx)@x}+8y2+1+hx05(1+hx65)_O°

Fixed point form:

Yy rov
V= V'W/o (a—y)

% 1 a9/ 1 oV
// [1+hxax{<”hx)ax}+1+hxas(1+hxas)]dydy‘

For whatever V, all parts not depending on y are reproduced exactly
(midplane info is preserved)
The advantages of the method are:

dy

e One needs code for the field only for the midplane.
e The resulting field will always satisty Maxwell’s equations.

e It works to any order.



3D Axis Laplace Solver

Laplace Equation in cylindrical coordinates:

10 [ 0V 1 0*°V  9*V
AV—;E(TE)—F?&@qﬁQ —O

If V' does not depend on ¢, namely V is rotat1onally symmetric, as in
solenoid magnets, the fixed point form of the Laplace equation is simplified

to
V=V|_ /07"/ r@drdr

For whatever V, all parts not depending on r are reproduced exactly
(on=axis info is preserved)
The advantages of the method are:

e One needs code for the field only on the axis
e The resulting field will always satisfy Maxwell’s equations.

e It works to any order.



COSY Code for 3D Laplace Solver

(Midplane symmetry case; rotationally symmetric case similar)

HF := 1+H*DA(IX) ; HI := 1/HF ; POLD := P ;

LOOP I 2 NOC+2 2 ;

P := POLD - INTEG(IY,INTEG(IY,

HI*( DER(IX,HF*DER(IX,P)) + DER(IS,HI*DER(IS,P)) ) )) ;
ENDLOOP ;\bigskip

e Variable P is pre-loaded with expansion in midplane only
e Loop over variable I goes to order of interest
e Function INTEG performs integration w.r.t. y

e 3D field is derived from the solution potential P, using again the DA
technique as

BX := DER(IX,P) ;
BY := DER(IY,P) ;
BZ := DER(IS,P) ;
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3, Bz by COSY and ICOOL for 1m long 0.3 radius thin solenoid
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3, Br by COSY and ICOOL for 1m long 0.3 radius thin solenoid
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3, Diff in Bz by COSY and ICOOL for 1m long 0.3 radius thin solenoid
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3, Diff in Br by COSY and ICOOL for 1m long 0.3 radius thin solenoid
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7, Diff in Bz by COSY and ICOOL for 1m long 0.3 radius thin solenoid
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11, Diff in Bz by COSY and ICOOL for 1m long 0.3 radius thin solenoid
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11, Diff in Br by COSY and ICOOL for 1m long 0.3 radius thin solenoid
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Average difference
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Conclusions

e Allows treatment of model fields based on simple assumptions about
on-axis or in-plane information only

e Automatically leads to order-by-order Maxwellian fields
e Can provide certain smoothing if fields are based on discretized pieces

e Resulting multipole expansion provides insight for correction and opti-
mization (what orders matter? what elements can be used to correct?)

e If many particles are transported and fields are complicated, computa-
tionally significantly more efficient.

e Simpler Midplane or on-axis fields of current rings, sheets, blocks
etc etc than general formulas

e Allows directly the computation of transfer maps





