

EMITTANCE EXCHANGE R&D ACTIVITIES AND PLANS

MUTAC Presentation

October 18 – 19, 2001

Gail G. Hanson Indiana University

PHYSICS ISSUES

- Is there a light Higgs boson? Data suggests "yes"
- If only one light Higgs boson, crucial to measure properties – SM or SUSY?
- At muon collider, Higgs produced through s-channel
- Can measure CP properties of Higgs bosons through asymmetries with transversely polarized beams

IMPLICATIONS FOR SUPERSYMMETRY

- Light Higgs boson (m_h ~ 120 GeV) indicates large value of tan β
- Disagreement of muon anomalous magnetic moment $(g-2)_{\mu}$ with SM prediction also indicates large tan β
- In decoupling limit, lighter Higgs boson h^0 has couplings like SM Higgs, but heavier Higgses H^0 , A^0 have non-SM couplings: coupling to gauge bosons is suppressed
- For larger values of tan β there is a range of heavy
 Higgs boson masses (H⁰, A⁰) for which discovery at
 LHC or e⁺e⁻ linear collider is not possible
- Heavy Higgs bosons are largely degenerate in MSSM

MUTAC October 18 - 19, 2001

Gail G. Hanson

A MUON COLLIDER AS A HIGGS FACTORY

- A beam energy spread as small as ~ 10⁻⁵ may be possible, allowing a measurement of m_H to a few hundred keV and a direct measurement of the width to about 1 MeV
- A Higgs factory muon collider is also a step towards a high energy (3–4 TeV) muon collider.

HIGGS FACTORY PARAMETERS

Baseline parameters for Higgs factory muon collider. Higgs/year assumes a cross section of 5×10^4 fb, Higgs width of 2.7 MeV, 1 year = 10^7 s. From "Status of Muon Collider Research and Development and Future Plans," Muon Collider Collaboration, C. M. Ankenbrandt *et al.*, *Phys. Rev. ST Accel. Beams* **2**, 081001 (1999).

COM energy (TeV) p energy (GeV) p's/bunch Bunches/fill Rep. rate (Hz) p power (MW) µ/ bunch µ power (MW) Wall power (MW) Collider circum. (m) Ave bending field (T)	0.40	0.1 16 5×10^{13} 2 15 4 4×10^{12} 1 81 350 3	0.000
rms $\delta p/p$ (%) 6D $\epsilon_{6,N}$ (π m) ³	0.12 1.7×10^{-10}	0.01 1.7 × 10 ⁻¹⁰	0.003 1.7×10^{-10}
rms ε_{n} (π mm mrad)	85	195	290
β^* (cm)	4.1	9.4	14.1
σ_{z} (cm)	4.1	9.4	14.1
$\sigma_{\rm r}$ spot (μ m)	86	196	294
$\sigma_{ extstyle extstyle$	2.1	2.1	2.1
Tune shift	0.051	0.022	0.015
$n_{\rm turns}$ (effective)	450	450	450
Luminosity (cm ⁻² s ⁻¹)	1.2×10^{32}	2.2×10^{31}	10 ³¹
Higgs/yr	1.9×10^{3}	4×10^{3}	3.9×10^{3}

A muon collider requires the muon beams to be cooled by several orders of magnitude compared with a neutrino factory.

All the muons must be in one bunch.

CONVERSION OF A NEUTRINO FACTORY TO A HIGGS FACTORY

MUTAC October 18 – 19, 2001

Gail G. Hanson

COOLING

 \times 100 cooling needed in each transverse and in longitudinal direction (~106 in 6D emittance) compared with μ 's from π decay.

EMITTANCE EXCHANGE

BENT SOLENOID

BUNCH STACKING

Emittance Exchange Schematic Diagram

EMITTANCE EXCHANGE

BALBEKOV RING COOLER

EMITTANCE EXCHANGE

Cooling module of a storage ring cooler (Garren).

Gail G. Hanson

SUMMARY

- Neutrino factory feasibility study simulations show cooling to $\varepsilon_{TN} = 2 \pi mm$ and $\varepsilon_{LN} = 30 \pi mm$ (bunched!)
- Ring Cooler cools ~ x 5 transverse, x 2 longitudinal
- Lithium lens (or other?) needed to cool $\sim \times$ 10 to sub-mm in ϵ_{TN}
- Details next talk!