

Absorber: Introduction & Design Issues

Muon Collaboration Meeting Shelter Island, NY 5/10/02

MuCool Absorber R&D Collaboration:

E. Almasri, E. L. Black, K. Cassel, R. Johnson, D. M. Kaplan, W. Luebke *Illinois Institute of Technology**

> S. Ishimoto, K. Yoshimura KEK High Energy Accelerator Research Organization

M. A. Cummings, A. Dychkant, D. Hedin, D. Kubik Northern Illinois University*

> Y. Kuno Osaka University

D. Errede, M. Haney University of Illinois at Urbana-Champaign*

> M. Reep, D. Summers University of Mississippi

W. Lau University of Oxford

in collaboration with

C. Darve, S. Geer, C. Johnstone[†], A. Klebaner, B. Norris, M. Popovic, A. Tollestrup *Fermilab*

*member, Illinois Consortium for Accelerator Research

†also at IIT

Key Issues:

- 1. Power handling
- 2. Minimization of multiple scattering: design of thin windows
- 3. Safety
- 4. Alternative materials

Absorber Power Dissipation

Worst case (?): "Revised FS-II" SFOFO1 Absorber:

- Lose 0.3 MeV/cm/ μ × 35 cm ≈ 11 MeV/ μ
- 4 MW beam \Rightarrow 1.0 \times 10¹⁵ p/s at 24 GeV
- FS-II: $\approx 0.6 \,\mu/p$ at entrance to SFOFO lattice 1 × 2 (get both signs with Neuffer ϕ R)
- $\Rightarrow 1.2 \times 10^{15} \,\mu/s \times 11 \,\text{MeV}/\mu \times 1.6 \times 10^{-13} \,\text{J/MeV}$ $= 2 \,\text{kW/absorber}$

SFOFO2 Absorber:

• $\approx 2/3$ as many muons, 60% as long $\Rightarrow \approx 40\%$ as much

Absorber	Length (cm)	Radius (cm)	Window thickness (µm)	Number needed	FS-II power (kW)	"RevFS-II power (kW)
Minicool?	175	30	?	2	≈5.5	≈22
SFOFO 1	35	18	360	16	≈0.27	≈2
SFOFO 2	21	11	220	36	≈0.1	≈0.9

Absorber-Medium Options

• Cooling rate: $\frac{d\varepsilon_{x,N}}{dz} \approx -\frac{1}{\beta^2} \frac{\varepsilon_{x,N}}{E} \left| \frac{dE}{dz} \right| + \beta_{\perp} \frac{(0.014 \text{ GeV})^2}{2\beta^3 E m_{\mu} L_R}$

Mat'l	ρ	M.P.	B.P.	dE/dx	<i>dE/dx</i> /cm	L_R	merit
	(g/cm^3)	(K)	(K)	$(MeV/g \cdot cm^2)$	(MeV/cm)	(cm)	$(L_R dE/dx)^{-2}$
LH ₂	0.0708	14	20	4.05	0.29	866	1
LHe	0.125		4	1.94	0.24	755	1.95
LiH	0.78	956		1.94	1.59	106	2.28
Li	0.53	454	1615	1.64	0.88	155	3.54
CH ₄	0.42	91	112	2.42	1.03	46.5	5.15
Be	1.848	1560	2744	2.95	2.95	65	6.02

- "merit" \propto rate of increase of (4D) transverse phase-space density

⇒ Hydrogen is best by factor ≈2, IF cooling channel reaches scatteringdominated regime

<u>LH₂ Cooling @ 2 kW</u>

- Flow-through absorber
 - First, estimate rate of bulk temperature rise if no flow: $c_p = 1.1 \times 10^4 \text{ J/kg·K}$ $\Delta T / \text{s} = \frac{\langle P \rangle}{c_p V \rho} = \frac{\langle P \rangle / L}{c_p A \rho}$ $= \frac{2 \text{ kW} / 0.35 \text{ m}}{1.1 \times 10^4 \text{ J/kg} \cdot \text{K} \times \pi (0.16 \text{ m})^2 \times 70.8 \text{ kg/m}^3}$ $\approx 0.1 \text{ K/s}$
 - \Rightarrow 0.1 volume change/s sufficient to keep $\Delta T \leq 0.1$ K

 $\approx 3 l/s$ SFOFO1 (35-cm) absorber

 \rightarrow should be feasible

(also need good mixing without eddies or dead zones)

- Convection-cooled absorber harder to analyze
 - may need boiling to achieve high enough rate of heat transfer within fluid

FS II Cooling Channel

2.75-m SFOFO ("Lattice 1"):

Performance simulations based on single set of windows per absorber at ≈1 atm operating pressure:

2.75-m SFOFO (lattice 1): 360 μm Al 1.65-m SFOFO (lattice 2): 220 μm Al

Safety Considerations

- Established FNAL LH₂ guidelines:
 - 1. Vacuum vessel enclosing LH_2 flask must contain neither oxygen nor ignition sources
 - 2. OK for absorber to operate at ≈ 15 psi, but vacuum vessel enclosing LH₂ flask must be rated for 30 psid (to handle pressure rise from evaporating LH₂ in case of flask rupture)
 - 3. Despite intended ≈15-psi absorber operating pressure, guidelines require absorber windows to have adequate safety margins at 25 psid MAWP
- RF cavity is ignition source!
 - → Especially if cells closed by grids rather than windows
 (In any case, Be RF windows not rated for 30 psid so wouldn't satisfy guidelines)
- ⇒ Need vacuum vessel around absorber with additional set of windows that are "twice as strong" as absorber windows themselves:

Window	Max int. pressure (psid)	Max ext. pressure (psid)	Safety factor (rupture)	Safety factor (yield)	Min rupture pressure (psid)
Absorber	25	-	4	1.5	100
Vac. vessel	30	15	2.5	1.5	75

Meeting Safety Requirements

• FS-II-design absorber windows have been shown by FEA and prototype tests to burst at >100 psid

(FNAL/IIT/NIU/Oxford/UIUC/UMiss)

- Now adopting more conservative criterion: burst pressure >120 psid
 - Allows margin for manufacturing tolerances on window thickness
 - \Rightarrow FS-II SFOFO1 windows would be 400 µm FS-II SFOFO2 windows would be 240 µm
- Now working through design details incorporating vacuum vessel per absorber

ICOOL Studies of Absorber Options

length (m)

• Updated μ/p within 15-cm longitudinal cutoff (Palmer/Gallardo/Fernow MUC-NOTE 233):

Case	Final µ∕p	Loss	
"FS II"	0.139 ± 0.04	-	
+ 2x Al	0.127 ± 0.02	8.6%	
LHe	0.121 ± 0.02	12.9%	
LiH	0.121 ± 0.02	12.9%	

central Al thickness = 0.72 mm/SFOFO1 absorber
central Al thickness = 2.16 mm/SFOFO1 absorber (based on "twice as strong means twice as thick")

Why are effects so small?

• FS II report:

→LiH costs only 1% (5%) in cooling rate near start of Lattice 1 (end of Lattice 2)

New Window Shape (Wing Lau, Oxford U.)

- Inflected or "bellows" shape:
 - Significantly stronger for same central thickness
 - Significantly thicker well away from center
- Preliminary FEA results (SFOFO1):
 - absorber-window central thickness = $210 \ \mu m$
 - vac-vessel-window central thickness $= 270 \ \mu m$

 \rightarrow 960 µm 6061-T6 per SFOFO1 absorber

(vs. 2,160 µm in ICOOL study above)

- If 2090-T81 a practical, machinable alloy (D. Summers investigating @ U. Miss)
 - Total thickness $\rightarrow \approx 530 \ \mu m$ per SFOFO1 absorber

<u>LHe Issues</u>

- Absorber cryoplant \approx \$10M in FS II
 - M. Green: refrigerator cost scaling ~ (1/T)^{0.7} ⇒ LHe cost ~ LH₂ cost × ≈2.5
 o not show stopper
 - BUT:
 - o Neuffer bunched $\phi R \rightarrow \times 2$ (keeps both signs)
 - Palmer: 4 MW p beam more cost effective than more cooling $\rightarrow \times 4$

 \Rightarrow Power ×10, LHe cryoplant cost ×10^{0.7} ~ \$130M?

LiH Issues

1. LiH is hazardous stuff:

• violently reacts exothermically with H_2O

 \rightarrow hydrogen gas + lithium hydroxide (highly corrosive)

 \Rightarrow incompatible with H₂O coolant or fire extinguishers

- released hydrogen may ignite explosively if air present
- Fermilab safety group has no experience with LiH (though other labs do)
- 2. Will most likely need to
 - encase it in metallic box (≈1-mil SS adequate?)
 - cool around edge with non-H₂O-filled cooling tubes
 - pump box interior down to vacuum to prevent outgassing-induced overpressure

LiH Issues (cont'd)

3. Center-to-edge ΔT for $\approx 250W$ heating $\approx 75K$ (need to refine calculation)

- 4. At highest power (≈2kW), edge-cooled LiH may melt; liquid absorber may be easier to cool than nonmetallic solid (though still a challenge)
- 5. Making contacts with experts at Oak Ridge, BNL, etc. (ORNL and some private companies can cast disks)

Conclusions:

- Effort to design, prototype, and beam-test an absorber is teaching us valuable lessons about real-world safety engineering
- LH_2 may still be best material (especially in potential applications with longer absorbers \Rightarrow relatively less window thickness, ring coolers, etc.)
- Need to prototype stronger window materials (2090-T81)
- Approaching realistic design including vacuum vessel per absorber
- Learning about LiH (for emittance exchange if not transverse cooling)