201 MHz Superconducting RF Status

Muon Collaboration Meeting
Shelter Island, NY- May 10, 2002
Don Hartill for the Cornell SRF Group

Outline

- A Few Pictures
- Issues and Expected Performance
- Likely Schedule
- Future

Budget for Surface Resistance of 201 MHz Cavity

- Two components of resistance BCS and residual (due to magnetic field)
- From CERN 350 MHz cavities $R_{\text{mag}} = 0.15 \text{(nohm/mOe)}$
- With sqrt frequency dependence and with measured field of 200 mOe in test pit expect R_{mag} = 23 nohm
- BCS resistance is 32 nohm at 4.5 K and 2 nohm at 2.5 K
- With geometry factor of cavity of G = 250 ohms this gives $Q_0 = 4.6 \times 10^9$ at 4.5 K and 1.0×10^{10} at 2.5 K
- In addition, NbCu cavities have a "Q Slope" requiring x3 power at 15 MV/m accelerating gradient

- At 4.5 K with 1600 W of available power, have > 600 W margin even with 430 mOe residual field at 15 MV/m.
 Present shielding is soft iron from leftover sheet for CESR Quadrupole laminations.
- Input coupler is adjustable to give Q_{ext} from 2 x 10⁹ to > 2 x 10¹⁰ so that cavity can be operated critically coupled.

Likely Schedule

- Mount Cavity on stand, insert in cryostat in pit, and connect to RF amplifier and instrumentation complete by June 15.
- Cool down and test (requires 5000 liters of LHe) by end of June.
- Expect to have to recoat with Nb to reach 15 MV/m.
- About to have fun.....

Future Plans

- Expect to achieve 15 MV/m accelerating gradient and go as far as possible towards a usable cavity.
- Exploring spinning cavity from a single piece of Cu
 we have a 500 MHz cavity at Cornell made at INFN which we plan to have Nb coated at CERN after we install needed ports.
- Exploring advanced ion assisted coating techniques to try to reduce "Q Slope" and achieve higher gradients.
- Continue our efforts on trying to understand RF breakdown in both warm and cold cavities.

Cavity Prep	100000				
He Pumping	25000				
Shielding and Interlocks	300000				
Carita Taran		50000			
Cavity Tuner He Vessel for 1st Cavity	20000	50000			
Improved Nb/Cu Cavity	20000				
Input Power Couplers+Windows	109703	36295			
Recoat Cavities		20000			
Complete Cryostat			50000		
Fab & Test Tuner&Coupler			100000		
High Power Test Eq.			30000		
Recoat Cavity			20000		
Vac. & Inst. For Cryostat			50000		