AGS Beam Intensity Upgrades

High intensity history at the AGS

Sextupole power supply upgrades

Bunch manipulation and merging

Extraction and beam transport

Kevin Brown Muon collaboration meeting May 9-15, 2002

• Single bunch extraction: 6 TP circulating in AGS, 4.5 TP in beam line, 3.7 TP at target (Goal: 16 TP)

• To get low loss extraction it was necessary to run with negative vertical chromaticity. This seems to cause vertical transverse instabilities at higher

intensities.

No. of Magnet Sections: Length per Section: Total length: Aperture Specification: Field Strength:

58.4 cm 241.3 cm 32 mm Deep x 22 mm High 1000 Gauss at 2000 Amps

• 70 TP Slow extracted beam observations. Vertical Chromaticity is kept positive after transition.

• A key parameter is peak beam current.

Bunch Dilution using VHF cavity

AGS performance for g-2 operation

- 6 single bunch transfers from Booster
- Peak intensity reached: 72×10^{12} ppp
- Bunch area: 3 eVs at injection 10 eVs at extraction
- Intensity for g-2 ops: $50-60 \times 10^{12}$ ppp
- Strong space charge effects during accumulation in AGS
- 2nd order transition energy jump limits available momentum aperture.
- Chromatic mismatch at transition causes emittance dilution
- Dilution needed for beam stability

What has been achieved

- Spot size: $\sigma^2 \sim 1 \text{ mm}^2$ measured by flag (Goal: 1 mm²)
- Spot size measured by foil activation: $\sigma^2 \sim 0.4 \text{ mm}^2$

Upgrades

- New separate power supply for vertical sextupole (F7) to keep losses low with positive vertical chromaticity (\$75k)
- New power supply to allow for positive horizontal chromaticity after transition (\$150k)
 - CERN PS experience: with gammat jump and chromaticity jump (-1 -> +0.1) reached 7 TP/bunch with 2.2 eVs [3.2 TP/eVs]
 - Limited by beam break-up instability (transverse microwave inst.)
 - AGS has gammat jump but large negative horizontal chromaticity (~ -2). Limited to about 1 TP/eVs after transition.
 - With new supply could get 10 TP/bunch in ~ 4 eVs -> bunch length at extraction ~ 50 ns (peak current: 65 A)

Beam break-up at CERN PS

 $7 \times 10^{12} \text{ ppb}, > 2.2 \text{ eVs}$

Occurs close to transition

Cured with long. blow-up

(R. Cappi, Snowmass 2001)

AGS Modifications

HORIZONTAL SEXTUPOLE SPECIFICATION DATA SHEET

Input Voltage: 460 Vrms 3 phase, +10%, -5%, 60 Hz

DC Output Voltage: -300 V to +300 V Continuously Adjustable

DC Output Current: 600A Continuously Adjustable

Pulse Repetition Frequency: DC to 10 Hz

Regulation mode: Current

Load Current Tracking: 0.01% during flat-top, 0.5% during rise/fall

Zero Current Crossover Distortion: < 0.5%

Load Current Rise Time: < 20 msec @ 100A

Load Current Settling Time: < 5 msec

Output Voltage Ripple: < 0.03%, DC to 10 kHz < 0.3%, 10 kHz to 1MHz

Electrical Load: 0.34 ohm + 40 mH

AGS Modifications

VERTICAL F7 P. S. SPECIFICATION DATA SHEET

Input Voltage: 460 Vrms 3 phase, +10%, -5%, 60 Hz

DC Output Voltage: -40 V to +40 V Continuously Adjustable

DC Output Current: -500A to +500A Continuously Adjustable

Pulse Repetition Frequency: DC to 10 Hz

Regulation mode: Current

Load Current Tracking: +/- 0.01% during flat-top, 0.5% during rise/fall

Load Current Rise Time: < 20 msec @250A

Load Current Settling Time: < 5 msec

Output Voltage Ripple: < 0.1%, DC to 10 kHz < 1%, 10 kHz to 1 MHz

Electrical Load: 0.02 ohm + 3 mH

AGS Modifications

New Coils for AGS Sextupoles: tested to 600 amp dc

Fast transverse instability at RHIC

Occurs close to transition when chromaticity crosses zero

Cures: beam-beam tune spread, octupoles

Tomographic reconstruction of 2D bunch density

Intensity

Rf bunch merging

- Increased intensity per bunch by accelerating 2 bunches and then merge before extraction.
- Accelerate two adjacent bunches with h = 12 and then coalesce to h = 6. With the lower ramp rate of the Westinghouse motor-generator extra cavities are available for operation with two harmonic numbers
- Could reach 2 x 7 TP in the final bunch
- Need ~ 3 shifts for a dedicated study (preferred)
- Need ~ 6 shifts for a parasitic study (3 shifts to set-up ppm)

Rf bunch merging

g-2 Experiment limited by production target to 7x10¹² protons/bunch.

Six Bunches were
Split into 12 by
Adiabatic
Ramping of h=6
and h=12 RF
Voltage

Splitting of 9 x 10¹² bunches

Beam Transport to A3 Target

- Third Current transformer added in middle of transport line
- Modifying Flag/Camera setup to get higher quality images.
 - Investigate flag materials/properties
 - Disable automatic gain and blacklevel
 - cross-calibration from foil activation ?
- Reviewing beam optics for possibly smaller beam spots. In particular, making the last quadrupole horizontal focusing.

