

Longitudinal Motion in Nearly-Isochronous FFAGs

J. Scott Berg Brookhaven National Laboratory 11 May 2002

Introduction

- Path length in FFAG arc not independent of energy.
 - Very nearly quadratic
 - ◆ Particle won't come back to RF at same phase each time
 - ◆ High-frequency RF: walk off crest
- Given the maximum path length deviation, how many turns can a particle be accelerated
 - Answer: infinite
 - ◆ Linac voltage goes to nonzero value as turns go to infinity
 - ◆ Minimum voltage increases linearly with path length deviation
- How does acceptance vary with number of turns?

Path Length Variation with Energy Superconducting, One Cell

Lattice Description

- Alternating sequence of cavities/linacs and arcs
- Two types of systems
 - ◆ Racetrack (or small number of sides): two long linacs, two long arcs
 - ◆ Distributed RF: many short arcs alternating with single cavities
- Path length varies quadratically with energy in arcs
 - Minimum path length at middle energy
 - Being exactly quadratic not essential
 - ◆ Can adjust total arc length so that zero (relative to integer number of RF cycles) occurs for any energy you want (different trick for distributed RF)
- All cavities/linacs have same phase
- Ignore time-of-flight change in linac

Equations

Equations of motion

$$E_{n+1} = E_n + V\cos(\omega \tau_n) \qquad \tau_{n+1} = \tau_n + \Delta T \left(\frac{E_{n+1} - E_{\text{avg}}}{\Delta E/2}\right)^2 - T_0$$

- E_n is energy after nth cavity/linac pass
- τ_n is time-of-flight relative to crest in nth linac
- ΔE is total energy gain
- E_{avg} is middle energy
- ullet ΔT is the difference in time-of-flight from the minimum to the end of the parabola
- T_0 a time-of-flight offset that can be generated by changing the arc length (or relative cavity phasing in a distributed RF system)

Finding System Parameters

- Fix N, the number of turns, and $E_N E_0 = \Delta E$, the total energy gain.
- ΔT is given by the lattice design
- Minimize V, the required RF voltage by varying
 - τ_0 , the time at which you enter the first cavity/linac
 - T_0 , the time-of-flight offset from zero of the minimum of the parabola
 - ★ For long arcs (generally few long linacs per turn), adjust arc length slightly
 - ★ For short arcs (many arcs and small cavities distributed evenly around the ring), adjust relative cavity phases
 - > If M cavities per turn, relative phase a multiple of $2\pi/M$

Continuous Approximation

• Write discrete equations as differential equations

$$\frac{dE}{dn} = V\cos(\omega\tau) \qquad \qquad \frac{d\tau}{dn} = \Delta T \left(\frac{E - E_{\text{avg}}}{\Delta E/2}\right)^2 - T_0$$

• Eliminate *n*

$$\left[\Delta T \left(\frac{E - E_{\text{avg}}}{\Delta E/2}\right)^2 - T_0\right] dE = V \cos(\omega \tau) d\tau$$

Continuous Approximation (cont.)

• Integrate both sides

$$\frac{\Delta T \Delta E}{6} \left(\frac{E - E_{\text{avg}}}{\Delta E / 2} \right)^3 + \frac{\Delta T \Delta E}{6} - T_0 (E - E_0) = \frac{V}{\omega} [\sin(\omega \tau) - \sin(\omega \tau_0)]$$

- RHS is bounded for fixed V
- \bullet LHS has two internal extrema, plus value at maximum E.
- Maximum of these three determines minimum V
- Choose T_0 minimizing that maximum
- That optimum occurs when

$$T_0 = \frac{\Delta T}{4} \qquad \qquad \omega \tau_0 = \frac{\pi}{2} \qquad \qquad V = \frac{\omega \Delta T \Delta E}{24}$$

Note $V \propto (\Delta E)^3$ for given arcs

Description of Motion

- Cross crest three times
 - Starts far off-crest, oscillates to about same distance off-crest on other side
- Validity of continuous approximation
 - As $N \to \infty$ with $N\Delta\phi$ fixed, solution approaches continuous approximation
 - * Distributed RF
 - If fix $\Delta \phi$ and let $N \to \infty$:
 - * Racetrack
 - \star Appears that T_0 and V nearly continuous values
 - * Reason for differences: $\Delta \phi$ still gives a finite phase jump at beginning for large N
 - \star Reason can still have infinite N: much time spent near synchronous phase

Sample Solution

- $\Delta \phi = 1$ radian
- Can get large number of turns
- Little to be gained in cost by going past 30 half-turns
- Voltage and T_0 approach continuous approximation values
 - ◆ V actually a bit less
- Note large number of turns spent near phase extrema
- Acceptance
 - Appears to decrease with increasing turns
 - ◆ Width increases with increasing turns: crest-crossing

Linac Voltage

Initial Phase

Path Length Offset

Initial Phase Space

Initial Phase Space

Conclusions and Improvements

- Can quickly compute minimum voltage needed in FFAG accelerator
- Can accelerate for arbitrary number of turns
 - Linac voltage does not go to zero
 - ◆ Phase space acceptance decreases
- Results for different voltage profile or time-of-flight profile qualitatively similar
 - ◆ Linear time-of-flight would cross crest twice. Less optimal for given total swing.
- Improvements
 - ◆ Allow linacs to have different phases, also different arcs
 - ◆ Increase voltage above optimum: better phase space acceptance?